Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Fluoroalkyl fragments are ubiquitous motifs in pharmaceuticals and agrochemicals, but their introduction to a given molecule typically involves expensive or difficult-to-handle reagents. Now, the photocatalysed hydrofluoroalkylation of alkenes has been achieved using simple and readily available fluoroalkyl carboxylic acids.
Stereoselective decarboxylative protonation can produce diverse chiral molecules from widely available carboxylic acids. However, general and practical strategies are lacking. Now, a chiral spirocyclic phosphoric acid-catalysed decarboxylation of aminomalonic acids has enabled the modular synthesis of α-amino acids.
Becoming an assistant professor brings with it numerous challenges, one of which is teaching undergraduate courses for the first time. Shira Joudan reflects on the ups and downs of setting up and delivering her first course.
Recent improvements in de novo protein design are likely to support a broad range of applications, but larger complexes will be easier to create if a building block approach is adopted. Now protein filaments with tunable geometry can be made using assemblies that have both cyclic and superhelical symmetries aligned along the same axis.
The synthesis of two-dimensional (2D) organic lateral heterostructures with desirable properties from organic single crystals remains challenging. Now, 2D organic lateral heterostructures have been produced by using a liquid-phase growth approach and vapour-phase growth method, enabling the structural inversion of organic lateral heterostructures via a two-step strategy.
Polymethine dyes are bright and red-shifted fluorophores that lack an intrinsic turn-on mechanism, which leads to non-specific staining when applied to biological samples. Now the fluorescence of polymethine dyes was masked through an intracellular cyclization strategy that gets reversed upon binding an intended macromolecular target, providing specificity for live-cell imaging.
Late-stage functionalization of complex drug molecules is challenging. To address this problem, a discovery platform based on geometric deep learning and high-throughput experimentation was developed. The computational model predicts binary reaction outcome, reaction yield and regioselectivity with low error margins, enabling the functionalization of complex molecules without de novo synthesis.
Ribonucleoprotein granules are ubiquitous in living organisms with the protein and RNA components having distinct roles. In the absence of proteins, RNAs are shown to undergo phase separation upon heating. This transition is driven by desolvation entropy and ion-mediated crosslinking and is tuned by the chemical specificity of the RNA nucleobases.
Long polyynes have fascinating properties but they are difficult to synthesize as a consequence of their high reactivity. Now, it has been shown that cobalt carbonyl complexes can be used as masked alkyne equivalents, enabling the preparation of stable polyyne polyrotaxanes with up to 34 contiguous triple bonds.
The inherent rigidity of the azaarene ring structure has made it challenging to achieve remote stereocontrol through asymmetric catalysis on these substrates. Now, through a photoenzymatic process, an ene-reductase system facilitates the production of diverse azaarenes with distant γ-stereocentres, highlighting the potential of biocatalysts for stereoselectivity at remote sites.
Asymmetric decarboxylation can transform abundant carboxylic acids into valuable chiral molecules but faces major limitations due to the challenging enantiocontrol of proton transfer. Now the use of Brønsted acid catalysis in conjunction with an anchoring group strategy has enabled the decarboxylative protonation of aminomalonic acids to access diverse amino acids.
Alkene hydrofluoroalkylation offers a promising route to diverse fluoroalkylated compounds but current methods have limitations, such as needing expensive fluoroalkylating reagents. Now, leveraging iron photocatalysis and hydrogen-atom-transfer catalysis, a hydrofluoroalkylation method has been developed that utilizes feedstock chemicals such as trifluoroacetic acid as direct fluoroalkyl radical precursors, providing a redox-neutral, general protocol to introduce fluoroalkyl moieties.
To develop covalent inhibitors with high potency and low off-target effects, combinatorial approaches that search for candidates from large libraries are desired. Here, sulfur(VI) fluoride exchange (SuFEx) in vitro selection is established for the evolution of covalent aptamers from trillions of SuFEx-modified oligonucleotides. Through this technique, covalent aptamers with optimally balanced selectivity and reactivity are identified.
The synthesis of optically enriched atropisomers has so far been limited to molecules containing aryl groups. Now a variant of non-aryl atropisomerism has been identified in vinyl sulfoxonium ylides, and an organocatalytic method has been developed to produce these molecules. This type of axial chirality is characterized by restricted rotation of the central C(sp2)–C(sp2) bond.
Sequences of synthetic polymers are generally heterogeneous and dictate many of their physiochemical properties, but are challenging to determine. Now an imaging method, termed CREATS (coupled reaction approach toward super-resolution imaging), can count, localize and identify each monomer of single polymer chains during (co)polymerization.