Browse Articles

Filter By:

  • Hydrogenation catalysis is commonly associated with (noble) transition metals that undergo oxidative addition of H2 and subsequently transfer hydrogen atoms to unsaturated substrates. Now, a geometrically constrained phosphenium cation can facilitate both of these challenging transformations.

    • Josh Abbenseth
    News & Views
  • Hydroxyl radicals (·OH) are important reactive oxygen species in environmental chemistry. The most efficient way to generate them is through a single-electron water-oxidation step, but this light-driven process is inefficient over inorganic semiconductor materials. Now, a judiciously designed polymeric carbon nitride has demonstrated high photocatalytic efficiency.

    • Zhipeng Yu
    • Lifeng Liu
    News & Views
  • Selection rules play an important role in Darwinian evolution. Now, it has been shown that selective templation enables the purification of oligomer libraries in a coacervate model, and that the oligomer library can reversibly affect the coacervates’ fusion behaviour.

    • Rahul Dev Mukhopadhyay
    News & Views
  • Molecular geometry can influence chemical reactivity through several opposing effects. By selecting individual conformers of hydroquinone in the chemi-ionization reaction with metastable neon, it is now shown that reaction pathways can be governed by molecular alignment due to geometry-dependent forces that are, however, countered by molecular rotation.

    • L. Ploenes
    • P. Straňák
    • S. Willitsch
    Article
  • Lysine ubiquitination, catalysed by E3 ubiquitin ligases, is pivotal for regulating protein stability and cell signalling. Using protein semisynthesis, the roles of the C-terminal carboxylate and conformational interconversion in HECT-domain E3 catalysis are now characterized, revealing evolutionary plasticity in side chain versus backbone utilization.

    • Hanjie Jiang
    • Bryant D. Miller
    • Philip A. Cole
    Article
  • Although natural terpenoid cyclases generate polycyclic structures through cationic intermediates, alternative radical cyclization pathways are underexplored. Now an artificial radical cyclase has been prepared by anchoring a biotinylated cobalt Schiff-base complex within a chimeric streptavidin scaffold. Chemogenetic optimization of the catalytic performance affords enantioenriched terpenoids via a metal-catalysed H-atom transfer mechanism.

    • Dongping Chen
    • Xiang Zhang
    • Thomas R. Ward
    Article
  • Weaving purely organic molecular threads into two-dimensional patterns remains a formidable challenge. Now, driven by the formation of dative B–N bonds, a purely organic, two-dimensional and flawless woven polymer network has been prepared. In addition, free-standing monolayers of woven polymer nanosheets have been obtained through mechanical exfoliation.

    • Ding Xiao
    • Zhitong Jin
    • Feihe Huang
    ArticleOpen Access
  • Selection mechanisms were critical at the emergence of life and will also be important for the synthesis of life. Now, it has been shown that template-based copying controls the selection of unstable molecules in a chemically fuelled dynamic combinatorial library. Moreover, when encapsulated inside coacervate droplets, these mechanisms change the coacervate’s physical properties.

    • Christine M. E. Kriebisch
    • Ludwig Burger
    • Job Boekhoven
    ArticleOpen Access
  • The mechanism of collagen heterotrimer folding is difficult to recapitulate synthetically. Now an ABC collagen mimetic heterotrimer has been designed that employs pairwise amino acid interactions, validated by X-ray crystallography, to promote composition- and register-specific assembly. The high specificity of its assembly leads to an increased rate of folding compared with similar collagen heterotrimers.

    • Carson C. Cole
    • Douglas R. Walker
    • Jeffrey D. Hartgerink
    Article
  • Conventional Li-ion battery electrolytes often show sluggish kinetics and severe degradation due to high Li+ desolvation energies and poor compatibility. Now, a molecular-docking strategy between solvents and inducers has been shown to enable dynamic Li+ coordination that promotes fast, stable and high-voltage lithium battery chemistries.

    • Baochen Ma
    • Haikuo Zhang
    • Xiulin Fan
    Article
  • Phosphinidene oxides are intermediates in the combustion of organic phosphorus compounds; however, they are highly unstable and their observation requires ultralow temperatures. Now it has been shown that a combination of steric bulk and electronic stabilization enables the isolation and manipulation of a two-coordinate phosphorus(III) oxide compound at room temperature.

    • Chenyang Hu
    • Nicolas H. Rees
    • Jose M. Goicoechea
    Article
  • Most lipid nanoparticles are structurally simplistic, existing as single-compartment assemblies. Now, a microfluidic technology to create liposomes-in-liposomes—with full control over particle features, such as the composition of each membrane, the intermembrane distance and payload of each compartment—has been developed. These particles are exploited for multi-stage release and in situ enzymatic synthesis within the particle’s attolitre volume.

    • Colin P. Pilkington
    • Ignacio Gispert
    • Yuval Elani
    ArticleOpen Access
  • A class of cationic—amidine-based degradable—lipids can now be readily synthesized through a tandem multi-component amine–thiol–acrylate conjugation reaction. Mechanistic studies provided key insights, from which the observed lead lipid enabled mRNA delivery to multiple organs, highlighting the potential for developing mRNA vaccines and therapeutics to treat various diseases.

    • Xuexiang Han
    • Mohamad-Gabriel Alameh
    • Michael J. Mitchell
    Article
  • The electrochemical double layer dictates how many energy conversion and storage technologies operate, but such interfacial systems are challenging to examine. Now, Schreier and colleagues have developed a way to correlate variations in the electrochemical double layer with audible frequency changes to afford real-time ‘audiolization’ of molecular movements.

    • Adam Weingarten
    News & Views
  • In this issue we feature several articles that explore advances in the study of phase separation. They highlight some recently reported mechanistic features and progress in the methodology used to study it within cells, and they delve into the implications that phase separation has for select cellular functions.

    Editorial
  • A. Ken Inge pores over the history and applications of bismuth subsalicylate, from dispelling digestive distress to breaching bacterial biodefences.

    • A. Ken Inge
    In Your Element
  • Expanded use of earth-abundant chromophores for excited-state chemistry requires the ability to increase the energy content of excited states while simultaneously lengthening their lifetimes. It has now been shown that this goal can be achieved in Co(III)-based chromophores by virtue of their photophysical dynamics occurring in the Marcus inverted region.

    • Atanu Ghosh
    • Jonathan T. Yarranton
    • James K. McCusker
    Article
  • Living anionic polymerization generally requires stringent conditions and one metal initiator per polymer chain. Now it has been shown that a weakly acidic compound serves as the initiator or chain-transfer agent in the presence of a potassium base catalyst to produce a polymer chain through a proton transfer anionic polymerization mechanism.

    • Mineto Uchiyama
    • Natsumi Ohira
    • Masami Kamigaito
    Article
  • Compounds containing metal–metal bonds can provide fresh insights into electronic structure and bonding, and their synthesis can open up new chemical space. A sandwich complex containing a lithium–aluminium bond has now delivered some food for thought in this arena.

    • David P. Mills
    News & Views