Browse Articles

Filter By:

  • Interlocked shape-persistent organic cages are rare structures and the majority are formed using π-stacking as the driving force. Now it is shown that weak dispersion interactions—which are modulated by changing the 1,4-substituents of the constituent dialdehyde linkers—can be used to form interlocked dimeric and trimeric catenated cages.

    • Bahiru Punja Benke
    • Tobias Kirschbaum
    • Michael Mastalerz
    Article Open Access
  • The light-driven conversion of abundant resources such as CO2 and H2O into chemical fuels for energy storage is crucial to end our dependence on fossil fuels. This Review highlights how molecular catalysts and photosensitizers can be grafted onto metal–organic frameworks to combine the advantages of both classes of compounds. Different synthetic strategies are discussed, along with their advantages and limitations.

    • P. M. Stanley
    • J. Haimerl
    • J. Warnan
    Review Article
  • The synthesis of cyclic polymers remains challenging. Now a trifunctional B-P-B frustrated Lewis pair has been shown to enable easy access to cyclic acrylic polymers through a bimolecular mechanism. These cyclic polymers have enhanced thermodynamic properties compared with their linear counterparts, while maintaining high chemical recyclability.

    • Yanjiao Song
    • Jianghua He
    • Eugene Y.-X. Chen
  • Polyketide natural products often contain common repeat motifs that are synthesized using iterative processes. Now a masked 1,3-diol motif, generated by a two-step process based on boronic ester homologation, has enabled the efficient iterative synthesis of polyacetates, including bahamaolide A. In addition to oxidation, the 1,3-polyboronic esters were shown to undergo various stereospecific transformations.

    • Sheenagh G. Aiken
    • Joseph M. Bateman
    • Varinder K. Aggarwal
  • Inelastic hydrogen atom scattering from surfaces provides a good benchmark for the validity of the Born–Oppenheimer approximation in surface chemistry. Now it has been shown that hydrogen atoms colliding with a semiconductor surface can efficiently excite electrons above the surface bandgap, representing a clear example of the failure of the approximation.

    • Kerstin Krüger
    • Yingqi Wang
    • Oliver Bünermann
    Article Open Access
  • Modulation of surface properties and functions can be achieved through covalent and non-covalent molecular binding, but the lack of responsiveness and requirement for specific binding groups makes spatiotemporal control challenging. Now, it has been shown that adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) host is an effective non-covalent binding strategy for programmable surface functionalization.

    • Shaohua Zhang
    • Wei Li
    • Daniela A. Wilson
    Article Open Access
  • Abhik Ghosh explores the structure, chemistry and applications of corroles, a class of sterically constrained macrocyclic tetrapyrroles.

    • Abhik Ghosh
    In Your Element
  • Methods to access organofluorine compounds with a trifluoromethyl- and fluoro-substituted carbon stereogenic centre are severely limited. Now, a flexible and stereodivergent approach has been developed for the efficient preparation of homoallylic alcohols containing this moiety. Conversion to polyfluoro furanosides and pyranosides has been demonstrated, which is relevant to antiviral drug development.

    • Shibo Xu
    • Juan del Pozo
    • Amir H. Hoveyda
  • The facile release of corrosive HCl gas and plasticizers from poly(vinyl chloride) (PVC) makes it a challenging material to recycle. Now, it has been shown that PVC waste can be directly used as a halogen source to synthesize chloroarenes. This paired electro(de)chlorination is mediated by a phthalate plasticizer already contained in PVC waste.

    • Danielle E. Fagnani
    • Dukhan Kim
    • Anne J. McNeil
  • Expanding the biocatalysis toolbox for C–N bond formation is of great value. Now, a biocatalytic amination strategy using a new-to-nature mechanism involving nitrogen-centred radicals has been developed. The transformations are enabled by synergistic photoenzymatic catalysis, providing intra- and intermolecular hydroamination products with high yields and levels of enantioselectivity.

    • Yuxuan Ye
    • Jingzhe Cao
    • Todd K. Hyster
  • Iodic acid (HIO3) forms aerosols very efficiently, but its gas-phase formation mechanism is not well understood. Atmospheric simulation chamber experiments, quantum chemical calculations and kinetic modelling have now revealed that HIO3 forms as an early iodine oxidation product from hypoiodite. The mechanism explains field measurements and suggests a catalytic role for iodine in particle formation.

    • Henning Finkenzeller
    • Siddharth Iyer
    • Rainer Volkamer
    Article Open Access
  • Gold nanoparticles typically exhibit hard-sphere-like assembly behaviour, but now the size, morphology and symmetry of crystals of Au25 nanoparticles have been tuned. The presence of excess tetraethylammonium cations has been shown to promote the one-dimensional assembly of the nanoparticles, which in turn form rod-like crystals, by stabilizing dynamically detached ligands from adjacent particles into interparticle linkers through CH⋯π and ion-pairing interactions.

    • Qiaofeng Yao
    • Lingmei Liu
    • Jianping Xie
  • Kinetic isotope effect studies can provide valuable insights into the complex mechanisms of the oxygen reduction reaction; however, inaccessibility to ultra-high-purity D2O has made this difficult. Now, a methodology to prepare ultra-pure D2O has been developed and inverse kinetic isotope effects have subsequently been measured for the oxygen reduction reaction on platinum single-crystal surfaces, providing mechanistic insights.

    • Yao Yang
    • Rishi G. Agarwal
    • Héctor D. Abruña
  • The direct carbon isotope exchange reaction on α-amino acids is highly desirable, as existing labelling methods require several synthetic steps and harsh conditions. Now, an aldehyde-catalysed carboxylate exchange with isotopically labelled *CO2 has enabled the direct formation of 11C, 13C and 14C-labelled α-amino acids.

    • Karoline T. Neumann
    • Troels Skrydstrup
    News & Views
  • The study of rare isotopes, including many in the f-block, is a key step to advancing our fundamental understanding of these elements, but their scarcity poses challenges. Now, minute amounts of such materials have been isolated and characterized through complexation with polyoxometalate clusters.

    • Kristina O. Kvashnina
    News & Views
  • Geminal disubstitution of cyclic monomers is known to improve the chemical recyclability of their polymers, but usually at the expense of performance properties. Now, geminal disubstitution of a six-membered lactone has been shown to synergistically enable chemical recyclability back to the monomer and enhance the materials performance of the resulting polyesters, with properties that rival or exceed those of polyethylene.

    • Xin-Lei Li
    • Ryan W. Clarke
    • Eugene Y.-X. Chen
  • Incorporating silicon into organic molecules and materials leads to interesting changes in electronic structure and properties; silabenzenes are attractive species for this purpose, but their high reactivity in solution poses challenges. Now, 1D and 2D covalent organic frameworks featuring disilabenzene rings (C4Si2) as linkers have been prepared by reacting silicon atoms and polyaromatic hydrocarbon precursors on a Au(111) surface.

    • Kewei Sun
    • Orlando J. Silveira
    • Shigeki Kawai
    Article Open Access
  • Carbon-labelled α-amino acids are valuable compounds in drug development and nuclear medicine, but are difficult and time consuming to prepare. Now, an aldehyde-catalysed method has been developed for the direct C1-labelling of α-amino acids using *CO2 (* = 14, 13, 11), providing access to many proteinogenic and non-natural labelled α-amino acids.

    • Odey Bsharat
    • Michael G. J. Doyle
    • Rylan J. Lundgren
  • The circadian rhythm generates out-of-equilibrium metabolite oscillations controlled by feedback loops under light/dark cycles. Now, it has been shown that these life-like properties can emerge from a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations.

    • Omar Rifaie-Graham
    • Jonathan Yeow
    • Molly M. Stevens
    Article Open Access