Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
The atomically precise assembly of metal nanoparticles offers vast possibilities for materials chemistry. Ring-shaped polyoxometalates have now served to stabilize Ag30 nanoparticles with exposed surfaces.
Atomically precise metal nanoclusters can serve a variety of purposes, yet their high reactivity also makes them difficult to synthesize. Now, well-defined {Ag30} nanoclusters have been prepared within ring-shaped polyoxometalates. These nanoclusters show good stability in solution and the solid state, can undergo redox-induced structural transformation, and possess exposed surfaces that can serve as catalytically active sites.
Generating aptamers for use as affinity reagents in analytical applications is important, but SELEX, the standard method for aptamer generation, is unable to select for pre-defined binding affinities. Now, by combining efficient particle display, high-performance microfluidic sorting and high-content bioinformatics, the method ‘Pro-SELEX’ can afford the quantitative generation of aptamers with programmable binding affinities.
The ortho-substituted phenyl ring is a basic structural element in chemistry. Now, 2-oxabicyclo[2.1.1]hexanes have been developed as saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties. Replacement of the phenyl ring with 2-oxabicyclo[2.1.1]hexanes in marketed agrochemicals fluxapyroxad and boscalid improved water solubility, reduced lipophilicity and retained bioactivity.
The use of main-group elements in radical cross-coupling reactions has been little explored. Now, a low-valency bismuth complex has been shown to emulate the behaviour of first-row transition metals and undergo single-electron-transfer oxidative addition to redox-active electrophiles, leading to the development of a bismuth-catalysed C–N coupling reaction between amines and carboxylic acids.
Trihydrogen cations are abundant in interstellar space and play a vital role in both star and organic molecule formation. Now it has been shown that D3+ cations can be directly produced through photoionization of molecular D2–D2 dimers.
Supramolecular structures are typically formed by the one-step self-assembly of building blocks. Now, a greater level of control has been achieved using stepwise non-covalent reactions under kinetic control. Two-dimensional block supramolecular polymers with tailored compositions and sequences were synthesized, and a site selectivity that is reminiscent of regioselectivity in covalent synthesis was observed.
Ribosomal incorporation of non-α-amino acid monomers into proteins is largely restricted to in vitro translation. Now, pyrrolysyl-transfer RNA synthetase variants have been shown to acylate tRNAs with α-thio acids, malonic acids, and N-formyl amino acids. This work represents a key step towards the programmed ribosomal synthesis of sequence-defined non-protein polymers in cellulo.
Ultra-high-capacity Li–air batteries have low Coulombic efficiency and degrade during re-charging, resulting in a poor cycle life. Redox mediators enable improvements but only at undesirably high potentials. The origin of this high potential and the impact of purported reactive intermediates has now been elucidated by resolving the charging mechanism using Marcus theory.
Bioresponsive hyperpolarized probes contain magnetic resonance signals that can be many orders of magnitude larger than those of common, thermally polarized probes. This Perspective discusses how bioresponsive hyperpolarized probes can be directly linked to biological events to give functional information, enabling the mapping of physiological processes and diseases in real time using magnetic resonance.
H3+ and D3+ serve as initiators of many chemical reactions in interstellar clouds. Now the ultrafast formation dynamics of D3+ from a light-driven bimolecular reaction starting from D2–D2 dimers have been measured. It has also been shown that the emission direction of D3+ can be controlled by driving the reaction with a more complex two-colour laser pulse.
Complexity is a hallmark of biological systems, but scientific experiments are typically conducted in simplified conditions. Now, diverse polymers that mimic the local environments of complex biological mixtures have been shown to improve protein folding, stability and function.
Constructing aptamers with desired target-binding affinities may lead to new applications but is challenging. Now, a new method using a high-dimensional microfluidic approach enables quantitative isolation of aptamers with programable binding affinities.
From humans designing machines, to machines designing biology, deep learning is turning the tables for assisted exploration of biologically active and diverse protein designs. Now, a deep-learning-based strategy has been used to design artificial enzymes that catalyse a light-emitting reaction.
The biosynthesis of the methylated sesquiterpene sodorifen, which features a cryptic methylation pattern, has now been studied through extensive labelling experiments and computational chemistry. The methyl group formation is now understood to come from methylene carbons of the substrate farnesyl diphosphate and the absolute configuration of the biosynthetic intermediate presodorifen diphosphate has been revised.
Colloidal clathrate crystals self-assembled from hard polyhedral shapes in computer simulations are stabilized by entropy compartmentalization, whereby hosts and guests contribute unequally to the entropy. This creative solution to satisfying the laws of thermodynamics suggests new ways to make colloidal crystals with open cages and hierarchical host–guest structures.
Protein solutions can undergo liquid–liquid phase separation, by condensing into a dense phase that often resembles liquid droplets, which coexist with a dilute phase. Now it is shown that hydrophobic interactions, specifically at interfaces, can trigger a liquid–solid phase separation of a protein solution.
Clathrates—open crystals with a hierarchy of polyhedral cages—are mostly found in atomic and molecular systems. Now, it has been shown through Monte Carlo simulations that the formation of colloidal host–guest clathrates can be driven by entropy alone, through entropy compartmentalization.
A trivalent 4f cationic complex bearing two bis-silylamide ligands has been prepared that displays slow magnetic relaxation. The bulky ligands and weakly coordinating anion stabilize the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy in this axially coordinated Yb(III) complex with well-localized charges.