Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell polarity in development and cancer

Abstract

The development of cancer is a multistep process in which the DNA of a single cell accumulates mutations in genes that control essential cellular processes. Loss of cell–cell adhesion and cell polarity is commonly observed in advanced tumours and correlates well with their invasion into adjacent tissues and the formation of metastases. Growing evidence indicates that loss of cell–cell adhesion and cell polarity may also be important in early stages of cancer. The strongest hints in this direction come from studies on tumour suppressor genes in the fruitfly Drosophila melanogaster, which have revealed their importance in the control of apical–basal cell polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial polarity and tissue organization are closely linked.
Figure 2: PAR-6 and other members of the PAR–aPKC complex are central components of signalling pathways that control polarity and proliferation.
Figure 3: Defects in the asymmetric division of stem cells may lead to the formation of tumours.

Similar content being viewed by others

References

  1. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  3. Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955–1959 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Rev. Cancer 4, 118–132 (2004).

    Article  CAS  Google Scholar 

  6. Cowin, P., Rowlands, T. M. & Hatsell, S. J. Cadherins and catenins in breast cancer. Curr. Opin. Cell Biol. 17, 499–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hermiston, M. L. & Gordon, J. I. In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J. Cell Biol. 129, 489–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hermiston, M. L. & Gordon, J. I. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270, 1203–1207 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Graziano, F., Humar, B. & Guilford, P. The role of the E-cadherin gene (CDH1) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. Ann. Oncol. 14, 1705–1713 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Herzig, M., Savarese, F., Novatchkova, M., Semb, H. & Christofori, G. Tumor progression induced by the loss of E-cadherin independent of β-catenin/Tcf-mediated Wnt signaling. Oncogene 26, 2290–2298 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Conacci-Sorrell, M., Zhurinsky, J. & Ben-Ze'ev, A. The cadherin–catenin adhesion system in signaling and cancer. J. Clin. Invest. 109, 987–991 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Humbert, P., Russell, S. & Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. BioEssays 25, 542–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Johnson, K. & Wodarz, A. A genetic hierarchy controlling cell polarity. Nature Cell Biol. 5, 12–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hough, C. D., Woods, D. F., Park, S. & Bryant, P. J. Organizing a functional junctional complex requires specific domains of the Drosophila MAGUK Discs large. Genes Dev. 11, 3242–3253 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeitler, J., Hsu, C. P., Dionne, H. & Bilder, D. Domains controlling cell polarity and proliferation in the Drosophila tumor suppressor Scribble. J. Cell Biol. 167, 1137–1146 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dow, L. E. et al. hScrib is a functional homologue of the Drosophila tumour suppressor Scribble. Oncogene 22, 9225–9230 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Grifoni, D. et al. The human protein Hugl-1 substitutes for Drosophila lethal giant larvae tumour suppressor function in vivo. Oncogene 23, 8688–8694 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, U., Phannavong, B., Muller, B., Garner, C. C. & Gundelfinger, E. D. Functional expression of rat synapse-associated proteins SAP97 and SAP102 in Drosophila dlg-1 mutants: effects on tumor suppression and synaptic bouton structure. Mech. Dev. 62, 161–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Klezovitch, O., Fernandez, T. E., Tapscott, S. J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 18, 559–571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol. 13, 734–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nature Cell Biol. 5, 301–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Qin, Y., Capaldo, C., Gumbiner, B. M. & Macara, I. G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061–1071 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gangar, A., Rossi, G., Andreeva, A., Hales, R. & Brennwald, P. Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function. Curr. Biol. 15, 1136–1142 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol. 170, 273–283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nelson, W. J. & Yeaman, C. Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends Cell Biol. 11, 483–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Giebel, B. & Wodarz, A. Tumor suppressors: control of signaling by endocytosis. Curr. Biol. 16, R91–R92 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Gardiol, D., Zacchi, A., Petrera, F., Stanta, G. & Banks, L. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int. J. Cancer 119, 1285–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kuphal, S. et al. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25, 103–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Nakagawa, S. et al. Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br. J. Cancer 90, 194–199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schimanski, C. C. et al. Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 24, 3100–3109 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Cavatorta, A. L. et al. Differential expression of the human homologue of Drosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy. Int. J. Cancer 111, 373–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Stoll, M. et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet. 36, 476–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Massimi, P., Gammoh, N., Thomas, M. & Banks, L. HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 23, 8033–8039 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Massimi, P., Narayan, N., Cuenda, A. & Banks, L. Phosphorylation of the discs large tumour suppressor protein controls its membrane localisation and enhances its susceptibility to HPV E6-induced degradation. Oncogene 25, 4276–4285 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Thomas, M., Massimi, P., Navarro, C., Borg, J. P. & Banks, L. The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene 24, 6222–6230 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Igaki, T., Pagliarini, R. A. & Xu, T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16, 1139–1146 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Uhlirova, M., Jasper, H. & Bohmann, D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc. Natl Acad. Sci. USA 102, 13123–13128 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uhlirova, M. & Bohmann, D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 25, 5294–5304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki, A. & Ohno, S. The PAR-aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Wodarz, A. Establishing cell polarity in development. Nature Cell Biol. 4, E39–E44. (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical–basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 12519–12524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murray, N. R. et al. Protein kinase Cι is required for Ras transformation and colon carcinogenesis in vivo. J. Cell Biol. 164, 797–802 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Regala, R. P. et al. Atypical protein kinase Cι plays a critical role in human lung cancer cell growth and tumorigenicity. J. Biol. Chem. 280, 31109–31115 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Regala, R. P. et al. Atypical protein kinase C ι is an oncogene in human non-small cell lung cancer. Cancer Res. 65, 8905–8911 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Schermer, B. et al. The von Hippel–Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J. Cell Biol. 175, 547–554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barry, R. E. & Krek, W. The von Hippel–Lindau tumour suppressor: a multi-faceted inhibitor of tumourigenesis. Trends Mol. Med. 10, 466–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Okuda, H. et al. The von Hippel–Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J. Biol. Chem. 276, 43611–43617 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Calzada, M. J. et al. von Hippel–Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res. 66, 1553–1560 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Rev. Cancer 6, 184–192 (2006).

    Article  CAS  Google Scholar 

  59. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pinal, N. et al. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr. Biol. 16, 140–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132, 1675–1686 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Watts, J. L., Morton, D. G., Bestman, J. & Kemphues, K. J. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127, 1467–1475 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Baas, A. F., Smit, L. & Clevers, H. LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol. 14, 312–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Forcet, C. et al. Functional analysis of Peutz–Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum. Mol. Genet. 14, 1283–1292 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Mirouse, V., Swick, L. L., Kazgan, N., St Johnston, D. & Brenman, J. E. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol. 177, 387–392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Linggi, B. & Carpenter, G. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 16, 649–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Aranda, V. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol. 8, 1235–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Zahir, N. & Weaver, V. M. Death in the third dimension: apoptosis regulation and tissue architecture. Curr. Opin. Genet. Dev. 14, 71–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Guo, W. et al. β4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol. 5, 816–826 (2004).

    Article  CAS  Google Scholar 

  76. Siegel, P. M. & Massagué, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  77. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274–7282 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

    Article  CAS  Google Scholar 

  84. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Wodarz, A. & Huttner, W. B. Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 120, 1297–1309 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Wodarz, A. Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr. Opin. Cell Biol. 17, 475–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Bello, B., Reichert, H. & Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133, 2639–2648 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Betschinger, J., Mechtler, K. & Knoblich, J. A. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nature Genet. 37, 1125–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P. & Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev. Cell 10, 441–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Choksi, S. P. et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev. Cell 11, 775–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Li, L. & Vaessin, H. Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev. 14, 147–151 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bowman, S. K., Neumuller, R. A., Novatchkova, M., Du, Q. & Knoblich, J. A. The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biol. 8, 586–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, C. Y. et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 20, 3464–3474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biol. 8, 594–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, H. et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, C. Y., Robinson, K. J. & Doe, C. Q. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439, 594–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Rolls, M. M., Albertson, R., Shih, H. P., Lee, C. Y. & Doe, C. Q. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J. Cell Biol. 163, 1089–1098 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Giet, R., Petretti, C. & Prigent, C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol. 15, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, X. et al. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25, 7148–7158 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  105. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Claudia Binder, Olaf Bossinger and Tobias Pukrop for critical comments on the manuscript. Work in our laboratories is funded by grants from the Deutsche Forschungsgemeinschaft (DFG Research Center for Molecular Physiology of the Brain (CMPB), Sonderforschungsbereich 523) to A.W. and by Cancer Research UK to I.N.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wodarz, A., Näthke, I. Cell polarity in development and cancer. Nat Cell Biol 9, 1016–1024 (2007). https://doi.org/10.1038/ncb433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing