Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Convergent extension and the hexahedral cell

During development, embryonic cells sculpt three-dimensional tissues. Although cell polarity is commonly analysed along one, and sometimes two, dimensions, this perspective illustrates how higher-order cell polarity regulates convergent extension — the coordinated cell rearrangement that produces solid tissue elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population-, cell- and molecular-level models for convergent extension.
Figure 2: Convergent extension with three-dimensional tissues and cells.

References

  1. Green, J. B., Dominguez, I. & Davidson, L. A. Self-organization of vertebrate mesoderm based on simple boundary conditions. Dev. Dyn. 231, 576–581 (2004).

    Article  PubMed  Google Scholar 

  2. http://www.mrw.interscience.wiley.com/suppmat/1058-8388/suppmat/2004/231_3/green_movie1.mov

  3. Kibar, Z., Capra, V. & Gros, P. Toward understanding the genetic basis of neural tube defects. Clin. Genet. 71, 295–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Stern, C.D. (ed.) Gastrulation: From Cells to Embryos. (Cold Spring Harbor Laboratory Press, New York. 2004).

  5. Keller, R. Mechanisms of elongation in embryogenesis. Development 133, 2291–2302 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wallingford, J. B., Fraser, S. E. & Harland, R. M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Rohde, L. A. & Heisenberg, C. P. Zebrafish gastrulation: cell movements, signals, and mechanisms. Int. Rev. Cytol. 261, 159–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Solnica-Krezel, L. Gastrulation in zebrafish — all just about adhesion? Curr. Opin. Genet. Dev. 16, 433–441 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Seifert, J. R. & Mlodzik, M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nature Rev. Genet. 8, 126–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Macara, I. G. Par proteins: partners in polarization. Curr. Biol. 14, R160–R162 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki, A. & Ohno, S. The PAR–aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Dabdoub, A. & Kelley, M. W. Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J. Neurobiol. 64, 446–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y., Badea, T. & Nathans, J. Order from disorder: self-organization in mammalian hair patterning. Proc. Natl Acad. Sci. USA 103, 19800–19805 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Axelrod, J. D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bastock, R., Strutt, H. & Strutt, D. Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130, 3007–3014 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Davidson, L. A., Marsden, M., Keller, R. & Desimone, D. W. Integrin α5β1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr. Biol. 16, 833–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hyodo-Miura, J. et al. XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation. Dev. Cell 11, 69–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, D., Munro, E. M. & Smith, W. C. Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr. Biol. 15, 79–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ciruna, B., Jenny, A., Lee, D., Mlodzik, M. & Schier, A. F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439, 220–224 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Kinoshita, N., Iioka, H., Miyakoshi, A. & Ueno, N. PKCδ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev 17, 1663–1676 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyakoshi, A., Ueno, N. & Kinoshita, N. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 72, 48–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hannus, M., Feiguin, F., Heisenberg, C. P. & Eaton, S. Planar cell polarization requires Widerborst, a B´ regulatory subunit of protein phosphatase 2A. Development 129, 3493–3503 (2002).

    CAS  PubMed  Google Scholar 

  27. Montero, J. A., Kilian, B., Chan, J., Bayliss, P. E. & Heisenberg, C. P. Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of gastrulating mesendodermal cells. Curr. Biol. 13, 1279–1289 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Habas, R., Dawid, I. B. & He, X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17, 295–309 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Park, T. J., Gray, R. S., Sato, A., Habas, R. & Wallingford, J. B. Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr. Biol. 15, 1039–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Iioka, H., Iemura, S. I., Natsume, T. & Kinoshita, N. Wnt signalling regulates paxillin ubiquitination essential for mesodermal cell motility. Nature Cell Biol. 9, 813–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Davidson, L. A., Keller, R. & Desimone, D. W. Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev. Dyn. 231, 888–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Marsden, M. & DeSimone, D. W. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128, 3635–3647 (2001).

    CAS  PubMed  Google Scholar 

  37. Marsden, M. & DeSimone, D. W. Integrin–ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr. Biol. 13, 1182–1191 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Keller, R. & Shook, D. R. in Gastrulation: from cells to embryos (ed. Stern, C.) 171–203 (Cold Spring Harbor Laboratory Press, New York. 2004).

    Google Scholar 

  39. Goto, T., Davidson, L., Asashima, M. & Keller, R. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15, 787–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Chalmers, A. D., Strauss, B. & Papalopulu, N. Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo. Development 130, 2657–2668 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Plusa, B. et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Symes, K. & Smith, J. C. Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101, 339–349 (1987).

    Google Scholar 

  43. Green, J. B. & Smith, J. C. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Shih, J. & Keller, R. Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116, 915–930 (1992).

    CAS  PubMed  Google Scholar 

  45. Ninomiya, H., Elinson, R. P. & Winklbauer, R. Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430, 364–367 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Tao, Q. et al. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Trinkaus, J. P. Cells into Organs: the forces that shape the embryo. (Prentice-Hall Inc., Englewood Cliffs. 1984).

    Google Scholar 

  49. Haga, H., Irahara, C., Kobayashi, R., Nakagaki, T. & Kawabata, K. Collective movement of epithelial cells on a collagen gel substrate. Biophys. J. 88, 2250–2256 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Elsdale, T. & Bard, J. Cellular interactions in mass cultures of human diploid fibroblasts. Nature 236, 152–155 (1972).

    Article  CAS  PubMed  Google Scholar 

  51. von der Hardt, S. et al. The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr. Biol. 17, 475–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, X., Dormann, D., Munsterberg, A. E. & Weijer, C. J. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev. Cell 3, 425–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Chung, H. A., Hyodo-Miura, J., Nagamune, T. & Ueno, N. FGF signal regulates gastrulation cell movements and morphology through its target NRH. Dev. Biol. 282, 95–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Yelick, P. C. & Schilling, T. F. Molecular dissection of craniofacial development using zebrafish. Crit. Rev. Oral Biol. Med. 13, 308–322 (2002).

    Article  PubMed  Google Scholar 

  55. Schlombs, K., Wagner, T. & Scheel, J. Site-1 protease is required for cartilage development in zebrafish. Proc. Natl Acad. Sci. USA 100, 14024–14029 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crump, J. G., Swartz, M. E. & Kimmel, C. B. An integrin-dependent role of pouch endoderm in hyoid cartilage development. PLoS Biol. 2, E244 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Piotrowski, T. et al. Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123, 345–356 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B.A.G. was supported by the Biotechnology and Biological Sciences Research Council (BB/D010640) and L.A.D. was supported by the National Institutes of Health (HD044750).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J., Davidson, L. Convergent extension and the hexahedral cell. Nat Cell Biol 9, 1010–1015 (2007). https://doi.org/10.1038/ncb438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing