Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling microtubule patterns

Abstract

The cellular cytoskeleton is well studied in terms of its biological and physical properties, making it an attractive subject for systems approaches. Here, we describe the experimental and theoretical strategies used to study the collective behaviour of microtubules and motors. We illustrate how this led to the beginning of an understanding of dynamic cellular patterns that have precise functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different levels of modelling the microtubule motor system.
Figure 2: Models for the motor stepping mechanism.
Figure 3: Standard model elements.
Figure 4: Mean-field methods.

Similar content being viewed by others

References

  1. Kauffman, S. At home in the universe. (Oxford University Press, New York, 1995).

    Google Scholar 

  2. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Janson, M. E. & Dogterom, M. Scaling of microtubule force-velocity curves obtained at different tubulin concentrations. Phys. Rev. Lett. 92, 248101 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Molodtsov, M. I. et al. A molecular-mechanical model of the microtubule. Biophys. J. 88, 3167–3179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. VanBuren, V., Cassimeris, L. & Odde, D. J. Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys. J. 89, 2911–2926 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nogales, E. & Wang, H. W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Hill, T. L. Linear aggregation theory in cell biology. xiv, p305 (Springer-Verlag, New York, 1987)

    Book  Google Scholar 

  11. Verde, F. et al. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097–1108 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Dogterom, M. & Leibler, S. Physical aspects of the growth and regulation of microtubule structures. Phys. Rev. Lett. 70, 1347–1350 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Janulevicius, A., van Pelt, J. & van Ooyen, A. Compartment volume influences microtubule dynamic instability: a model study. Biophys. J. 90, 788–798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miki, H., Okada, Y. & Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 15, 467–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Sakato, M. & King, S. M. Design and regulation of the AAA+ microtubule motor dynein. J. Struct. Biol. 146, 58–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Marx, A., Muller, J. & Mandelkow, E. The structure of microtubule motor proteins. Adv. Protein Chem. 71, 299–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mandelkow, E. & Hoenger, A. Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Burgess, S. A. & Knight, P. J. Is the dynein motor a winch? Curr. Opin. Struct. Biol. 14, 138–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Schief, W. R. et al. Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc. Natl Acad. Sci. USA 101, 1183–1188 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas, N. et al. Kinesin: a molecular motor with a spring in its step. Proc. Biol. Sci. 269, 2363–2371 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cross, R. A. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Fisher, M. E. & Kolomeisky, A. B. Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl Acad. Sci. USA 98, 7748–7753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chowdhury, D., Schadschneider, A. & Nishinari, K. Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2, 318–352 (2005).

    Article  Google Scholar 

  24. Bourdieu, L. et al. Spiral defects in motility assays: A measure of motor protein force. Phys. Rev. Lett. 75, 176–179 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Vilfan, A., Frey, E. & Schwabl, F. Elastically coupled molecular motors. European Physical Journal B 3, 535–546 (1998).

    Article  CAS  Google Scholar 

  26. Gibbons, F. et al. A dynamical model of kinesin-microtubule motility assays. Biophys. J. 80, 2515–2526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Leibler, S. & Huse, D. A. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121, 1357–1368 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Vilfan, A. et al. Dynamics and cooperativity of microtubule decoration by the motor protein kinesin. J. Mol. Biol. 312, 1011–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Parmeggiani, A., Franosch, T. & Frey, E. Phase coexistence in driven one-dimensional transport. Phys. Rev. Lett. 90, 086601 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Klumpp, S., Nieuwenhuizen, T. M. & Lipowsky, R. Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments. Biophys. J. 88, 3118–3132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klumpp, S. & Lipowsky, R. Cooperative cargo transport by several molecular motors. Proc. Natl Acad. Sci. USA 102, 17284–17289 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leduc, C. et al. Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl Acad. Sci. USA 101, 17096–17101 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papaseit, C., Pochon, N. & Tabony, J. Microtubule self-organization is gravity-dependent. Proc. Natl Acad. Sci. USA 97, 8364–8368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glade, N., Demongeot, J. & Tabony, J. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles. BMC Cell Biol. 5, 23 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Verde, F. et al. Taxol induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Urrutia, R. et al. Purified kinesin promotes vesicle motility and induces active sliding between microtubules in vitro. Proc. Natl Acad. Sci. USA 88, 6701–6705 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Surrey, T. et al. Physical properties determining self-organization of motors and microtubules. Science 292, 1167–1171 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Nedelec, F. J. et al. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Bassetti, B. L., Cosetino, M. & Jona, P. A Model for the self-organzation of microtubule driven by molecular motors. Eur. Phys. J. E. 15, 483–492 (1999).

    Google Scholar 

  41. Lee, H. Y. & Kardar, M. Macroscopic equations for pattern formation in mixtures of microtubules and molecular motors. Phys. Rev. E. 64, 056113 (2001).

    Article  CAS  Google Scholar 

  42. Kruse, K. et al. Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92, 078101 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Sankararaman, S., Menon, G. I. & Kumar, P. B. Self-organized pattern formation in motor-microtubule mixtures. Phys. Rev. E. 70, 031905 (2004).

    Article  CAS  Google Scholar 

  44. Aranson, I. S. & Tsimring, L. S. Pattern formation of microtubules and motors: inelastic interaction of polar rods. Phys. Rev. E. 71, 050901 (2005).

    Article  CAS  Google Scholar 

  45. Ahmadi, A., Liverpool, T. B. & Marchetti, M. C. Nematic and polar order in active filament solutions. Phys. Rev. E. 72, 060901 (2005).

    Article  CAS  Google Scholar 

  46. Mogilner, A., Wollman, R. & Marshall, W. F. Quantitative modeling in cell biology: what is it good for? Dev. Cell 11, 279–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Mogilner, A. et al. Modeling mitosis. Trends Cell Biol. 16, 88–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Holy, T. E. & Leibler, S. Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl Acad. Sci. USA 91, 5682–5685 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr Biol. 15, 828–832 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Sprague, B. L. et al. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84, 3529–3546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khodjakov, A., Gabashvili, I. S. and Rieder, C. L. “Dumb” versus “smart” kinetochore models for chromosome congression during mitosis in vertebrate somatic cells. Cell Motil. Cytoskeleton 43, 179–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Joglekar, A. P. & Hunt, A. J. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys. J. 83, 42–58 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Civelekoglu-Scholey, G. et al. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90, 3966–3982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nedelec, F. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J. Cell Biol. 158, 1005–1015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cytrynbaum, E. N., Scholey, J. M. & Mogilner, A. A force balance model of early spindle pole separation in Drosophila embryos. Biophys. J. 84, 757–769 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chakravarty, A., Howard, L. & Compton, D. A. A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol. Biol. Cell 15, 2116–2132 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schaffner, S. C. & Jose, J. V. Biophysical model of self-organized spindle formation patterns without centrosomes and kinetochores. Proc. Natl Acad. Sci USA 103, 11166–11171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brust-Mascher, I. et al. Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc. Natl Acad. Sci. USA 101, 15938–15943 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raj, A. & Peskin, C. S. The influence of chromosome flexibility on chromosome transport during anaphase A. Proc. Natl Acad. Sci. USA 103, 5349–5354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dixit, R. & Cyr, R. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16, 3274–3284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zumdieck, A. et al. Continuum description of the cytoskeleton: ring formation in the cell cortex. Phys. Rev. Lett. 95, 258103 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Maly, I. V. & Borisy, G. G. Self-organization of treadmilling microtubules into a polar array. Trends Cell Biol. 12, 462–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Cytrynbaum, E. N., Rodionov, V. & Mogilner, A. Computational model of dynein-dependent self-organization of microtubule asters. J. Cell Sci. 117, 1381–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Malikov, V. et al. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nature Cell Biol. 7, 1213–1218 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. Kruse, K., Camalet, S. & Julicher, F. Self-propagating patterns in active filament bundles. Phys. Rev. Lett. 87, 138101 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Kimura, A. & Onami, S. Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration. Dev. Cell 8, 765–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Grill, S. W., Kruse, K. and Julicher, F. Theory of mitotic spindle oscillations. Phys. Rev. Lett. 94, 108104 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Vale, R. D., Malik, F. & Brown, D. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J. Cell Biol. 119, 1589–1596 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Badoual, M., Julicher, F. and Prost, J. Bidirectional cooperative motion of molecular motors. Proc. Natl Acad. Sci. USA 99, 6696–6701 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Holy, T. E. et al. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6231 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yurke, M. D.a.B. Microtubule Dynamics and the Positioning of Microtubule Organizing Center. Phys. Rev. Lett. 81, 485–488 (1998).

    Article  Google Scholar 

  73. Tran, P. T. et al. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dogterom, M. et al. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 17, 67–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Cottingham, F. R. et al. Novel roles for saccharomyces cerevisiae mitotic spindle motors. J. Cell Biol. 147, 335–350 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wallrabe, H. & Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell. Biol. 129, 1311–1328 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 2000.

    Article  CAS  PubMed  Google Scholar 

  80. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Gilbert, S. P., Moyer, M. L. & Johnson, K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Svoboda, K. et al. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Svoboda, K. & Block, S. M Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yildiz, A. et al. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Peskin, C. S. & Oster, G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, S202–S210 (1995).

    Google Scholar 

  90. Shao, Q. & Gao, Y. Q. On the hand-over-hand mechanism of kinesin. Proc. Natl Acad. Sci. USA 103, 8072–8077 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jüicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Modern Phys. 69, 1269–1281 (1997).

    Article  Google Scholar 

  92. Astumian, R. D. The role of thermal activation in motion and force generation by molecular motors. Philos. Trans. R. Soc. Lond. B. 355, 511–522 (2000).

    Article  CAS  Google Scholar 

  93. Dogterom, M. et al. Influence of M-phase chromatin on the anisotropy of microtubule asters. J. Cell Biol. 133, 125–140 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsenti, E., Nédélec, F. & Surrey, T. Modelling microtubule patterns. Nat Cell Biol 8, 1204–1211 (2006). https://doi.org/10.1038/ncb1498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing