Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling data across labs, genomes, space and time

Abstract

Logical models and physical specifications provide the foundation for storage, management and analysis of complex sets of data, and describe the relationships between measured data elements and metadata — the contextual descriptors that define the primary data. Here, we use imaging applications to illustrate the purpose of the various implementations of data specifications and the requirement for open, standardized, data formats to facilitate the sharing of critical digital data and metadata.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HeLa cell expressing GFP–coilin (green) and histone H2B–YFP (red).

Similar content being viewed by others

References

  1. Shyamsundar, R. et al. A DNA microarray survey of gene expression in normal human tissues. Genome Biol. 6, R22 (2005).

    Article  PubMed  Google Scholar 

  2. Janes, K. A. et al. The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell 124, 1225–1239 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211 (2001).

    Article  CAS  Google Scholar 

  4. Andrews, P. D., Harper, I. S. & Swedlow, J. R. To 5D and beyond: Quantitative fluorescence microscopy in the postgenomic era. Traffic 3, 29–36 (2002).

    Article  Google Scholar 

  5. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  6. Gerlich, D. & Ellenberg, J. 4D imaging to assay complex dynamics in live specimens. Nature Cell Biol. Suppl, S14–S19 (2003).

  7. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods 3, 385–390 (2006).

    Article  CAS  Google Scholar 

  8. Nybakken, K., Vokes, S. A., Lin, T. Y., McMahon, A. P. & Perrimon, N. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nature Genet 37, 1323–1332 (2005).

    Article  CAS  Google Scholar 

  9. Kittler, R. et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040 (2004).

    Article  CAS  Google Scholar 

  10. Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet 25, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg, I. G. et al. The open microscopy environment (OME) data model and XML file: open pools for informatics and quantitative analysis in biological imaging. Genome Biol. 6, R47 (2005).

    Article  PubMed  Google Scholar 

  14. Johnston, J., Nagaraja, A., Hochheiser, H. & Goldberg, I. A flexible framework for web interfaces to image databases: supporting user-gefined ontologies and links to external databases. 3rd IEEE Intl Symp. on Biomedical Imaging: Macro to Nano 1380–1383 (2006).

  15. Thomann, D., Rines, D. R., Sorger, P. K. & Danuser, G. Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. J. Microsc. 208, 49–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Dufour, A. et al. Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans. Image Process 14, 1396–1410 (2005).

    Article  PubMed  Google Scholar 

  18. Platani, M., Goldberg, I., Lamond, A. I. & Swedlow, J. R. Cajal body dynamics and association with chromatin are ATP-dependent. Nature Cell Biol 4, 502–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Roques, E. J. S. & Murphy, R. F. Objective evaluation of differences in protein subcellular distribution. Traffic 3, 61–65 (2002).

    Article  PubMed  Google Scholar 

  20. Conrad, C. et al. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14, 1130–1136 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Chuai, M. et al. Cell movement during chick primitive streak formation. Dev. Biol. 296, 137–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Forouhar, A. S. et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science 312, 751–753 (2006).

    Article  CAS  Google Scholar 

  23. Seamer, L. C. et al. Proposed new data file standard for flow cytometry, version FCS 3.0. Cytometry 28, 118–122 (1997).

    Article  CAS  Google Scholar 

  24. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  25. Dowell, R. D., Jokerst, R. M., Day, A., Eddy, S. R. & Stein, L. The distributed annotation system. BMC Bioinformatics 2, 7 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Whetzel, P. L. et al. The MGED Ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22, 866–873 (2006).

    Article  CAS  Google Scholar 

  27. Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K. Informatics and quantitative analysis in biological imaging. Science 300, 100–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, K., Lin, J., Gajnak, J. A. & Murphy, R. F. Image content-based retrieval and automated interpretation of fluorescence microscope images via the protein subcellular location image database. Proc. IEEE Symp. Biomed. Imaging 325–328 (2002).

Download references

Acknowledgements

Work in the authors' laboratories is supported by grants from the Wellcome Trust, the Biotechnology and Biological Sciences Research Council (BBSRC) and Cancer Research UK (J.R.S.) and the National Institutes of Health (I.G.G. and S.E.L.). J.R.S. is a Wellcome Trust Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swedlow, J., Lewis, S. & Goldberg, I. Modelling data across labs, genomes, space and time. Nat Cell Biol 8, 1190–1194 (2006). https://doi.org/10.1038/ncb1496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing