Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells

Abstract

The mechanisms that ensure centrosome duplication are poorly understood. In Caenorhabditis elegans, ZYG-1, SAS-4, SAS-5 and SPD-2 are required for centriole formation. However, it is unclear whether these proteins have functional homologues in other organisms. Here, we identify SAS-6 as a component that is required for daughter centriole formation in C. elegans. SAS-6 is a coiled-coil protein that is recruited to centrioles at the onset of the centrosome duplication cycle. Our analysis indicates that SAS-6 and SAS-5 associate and that this interaction, as well as ZYG-1 function, is required for SAS-6 centriolar recruitment. SAS-6 is the founding member of an evolutionarily conserved protein family that contains the novel PISA motif. We investigated the function of the human homologue of SAS-6. GFP–HsSAS-6 localizes to centrosomes and its overexpression results in excess foci-bearing centriolar markers. Furthermore, siRNA-mediated inactivation of HsSAS-6 in U2OS cells abrogates centrosome overduplication following aphidicolin treatment and interferes with the normal centrosome duplication cycle. Therefore, HsSAS-6 is also required for centrosome duplication, indicating that the function of SAS-6-related proteins has been widely conserved during evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: sas-6 is required for daughter centriole formation.
Figure 2: SAS-6 is the founding member of the conserved PISA-containing protein family.
Figure 3: SAS-6 localizes to centrioles.
Figure 4: SAS-6 is recruited to centrioles once per cell cycle.
Figure 5: SAS-6 centriolar targeting.
Figure 6: SAS-6 and SAS-5 physically interact.
Figure 7: HsSAS-6 is required for centrosome duplication in human cells.

Similar content being viewed by others

References

  1. O'Connell, K. F. et al. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Leidel, S. & Gönczy, P. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4, 431–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Delattre, M. et al. Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nature Cell Biol. 6, 656–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J. & O'Connell, K. F. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pelletier, L. et al. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Azimsadeh, J. & Bornens, M. in Centrosomes in Development and Disease (ed. Nigg, E. A.) 93–122 (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  8. Wolf, N., Hirsh, D. & McIntosh, J. R. Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. J. Ultrastruct. Res. 63, 155–169 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Salisbury, J. L., Suino, K. M., Busby, R. & Springett, M. Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Dutcher, S. K. & Trabuco, E. C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes δ-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dutcher, S. K., Morrissette, N. S., Preble, A. M., Rackley, C. & Stanga, J. ε-tubulin is an essential component of the centriole. Mol. Biol. Cell 13, 3859–3869 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garreau de Loubresse, N., Ruiz, F., Beisson, J. & Klotz, C. Role of δ-tubulin and the C-tubule in assembly of Paramecium basal bodies. BMC Cell Biol. 2, 4 Epub 2001 Mar 07 (2001).

  13. Hung, L. Y., Tang, C. J. & Tang, T. K. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the γ-tubulin complex. Mol Cell Biol. 20, 7813–7825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Piano, F., Schetter, A. J., Mangone, M., Stein, L. & Kemphues, K. J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Sönnichsen, B. et al. Full genome RNAi profiling of early embryogenesis in C. elegans. Nature (in the press).

  17. Bellanger, J. M. & Gönczy, P. TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr. Biol. 13, 1488–1498 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wolff, A. et al. Distribution of glutamylated α and β-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur. J. Cell Biol. 59, 425–432 (1992).

    CAS  PubMed  Google Scholar 

  19. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol. 1, 88–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Warnke, S. et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14, 1200–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Chase, D. et al. The polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis 26, 26–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003).

    CAS  PubMed  Google Scholar 

  24. Dammermann, A., Mü ller-Reichert, T., Pelletier, L., Habermann, B., Desai, A. & Oegema, K. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wood, W. B. et al. Parental effects and phenotypic characterization of mutations that affect early development in Caenorhabditis elegans. Dev. Biol. 74, 446–469 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Nelson, G. A., Lew, K. K. & Ward, S. Intersex, a temperature-sensitive mutant of the nematode Caenorhabditis elegans. Dev. Biol. 66, 386–409 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pagni, M. et al. MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res. 32, W332–W335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sigrist, C. J. et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 3, 265–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Braun, P. et al. Proteome-scale purification of human proteins from bacteria. Proc. Natl Acad. Sci. USA 99, 2654–2659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Middendorp, S. et al. A role for centrin 3 in centrosome reproduction. J. Cell Biol. 148, 405–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Clamp, M., Cuff, J., Searle, S. M. & Barton, G. J. The Jalview Java alignment editor. Bioinformatics 20, 426–427 Epub 2004 Jan 2022 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are especially grateful to X. Yan, R. Habedanck and E. Nigg for guidance with cell culture techniques and reagents, as well as M. Cockell for help in generating SAS-6 fusion proteins. We thank J. Azimsadeh, M. Bornens, B. Eddé, M. Glotzer and V. Simanis for reagents. C. Echeverri is acknowledged for communicating results before publication; R. Iggo, V. Simanis and P. Strnad for critical reading of the manuscript; M. Migliaccio, P. Strnad and A. Wilson for help with FACS analysis; C. Bonnard and N. Garin for microscopy support; and D. Moersch and I. Jouravleff for helpful discussions. Some strains were obtained from the Caenorhabditis Genetics Center, which is funded by the National Institute of Health National Center for Research Resources (NCRR). M. D. is recipient of a Roche Research Foundation postdoctoral fellowship. Oncosuisse supports work on centrosome duplication in the Gönczy laboratory (OCS-01495-02-2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gönczy.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leidel, S., Delattre, M., Cerutti, L. et al. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol 7, 115–125 (2005). https://doi.org/10.1038/ncb1220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing