Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of the adipocyte cellular lineage in vivo

Abstract

Mature adipocytes are generated through the proliferation and differentiation of precursor cells. Our previous studies identified adipocyte progenitors in white adipose tissue (WAT) as Lin:CD29+:CD34+:Sca-1+:CD24+ (CD24+) cells that are capable of generating functional WAT (ref. 1). Here, we employ several Cre recombinase mouse models to identify the adipocyte cellular lineage in vivo. Although it has been proposed that white adipocytes are derived from endothelial2 and haematopoietic3,4 lineages, we find that neither of these lineages label white adipocytes. However, platelet-derived growth factor receptor α (PdgfR α)–Cre trace labels all white adipocytes. Analysis of WAT from PdgfR αCre reporter mice identifies CD24+ and Lin:CD29+:CD34+:Sca-1+: CD24 (CD24) cells as adipocyte precursors. We show that CD24+ cells generate the CD24 population in vivo and the CD24 cells express late markers of adipogenesis. From these data we propose a model where the CD24+ adipocyte progenitors become further committed to the adipocyte lineage as CD24 expression is lost, generating CD24 preadipocytes. This characterization of the adipocyte cellular lineage will facilitate the study of the mechanisms that regulate WAT formation in vivo and WAT mass expansion in obesity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adipocytes are derived from PdgfRα+ precursor cells in subcutaneous WAT.
Figure 2: CD24+ adipocyte progenitors give rise to CD24 cells in vivo.
Figure 3: CD24 cells express late adipogenic genes.
Figure 4: CD24 cells are further committed to an adipogenic fate.

Similar content being viewed by others

References

  1. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    Article  CAS  Google Scholar 

  2. Tran, K. V. et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 15, 222–229 (2012).

    Article  CAS  Google Scholar 

  3. Crossno, J. T., Majka, S. M., Grazia, T., Gill, R. G. & Klemm, D. J. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J. Clin. Invest. 116, 3220–3228 (2006).

    Article  CAS  Google Scholar 

  4. Sera, Y. et al. Hematopoietic stem cell origin of adipocytes. Exp. Hematol. 37, 1108–1120 (2009).

    Article  CAS  Google Scholar 

  5. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article  CAS  Google Scholar 

  6. Simon, G. in Adipose Tissue. Handbook of Physiology Vol. 5 (eds Renold, A. & Cahill, G.) 101–107 (American Physiology Society, 1965).

    Google Scholar 

  7. Pairault, J. & Green, H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc. Natl Acad. Sci. USA 76, 5138–5142 (1979).

    Article  CAS  Google Scholar 

  8. Lin, C. S. et al. Defining adipose tissue-derived stem cells in tissue and in culture. Histol. Histopathol. 25, 807–815 (2010).

    PubMed  Google Scholar 

  9. Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    Article  CAS  Google Scholar 

  10. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    Article  CAS  Google Scholar 

  11. Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    Article  CAS  Google Scholar 

  12. Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).

    Article  CAS  Google Scholar 

  13. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  CAS  Google Scholar 

  14. Alva, J. A. et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev. Dyn. 235, 759–767 (2006).

    Article  CAS  Google Scholar 

  15. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  Google Scholar 

  16. Charriére, G. et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J. Biol. Chem. 278, 9850–9855 (2003).

    Article  Google Scholar 

  17. McCollough, A. W. Evidence of macrophagal origin of adipose cells in the white rat as shown by studies on starved animals. J. Morphol. 75, 193–201 (1944).

    Article  Google Scholar 

  18. Wassermann, F. Die Fettorgane des Menchen. Entwicklung, Bau undsystematische Stellung des sogenannten Fettgewebes. Zeit. f. Zellforsch. u. Mikr. Anat. 3, 325–329 (1926).

    Article  Google Scholar 

  19. Latta, S. S. a. D. I. R. The reaction of the omental tissue to trypan blue injected intraperitoneally, with special reference to intrarelationship between cell types. Am. J. Anat. 56, 481–503 (1935).

    Article  Google Scholar 

  20. Godina, G. Ricerche sullo sviluppo e sulla natura del tessuto adiposo deibovini. Nota I. Arch. Ital. Anat. 42, 455–473 (1939).

    Google Scholar 

  21. Cousin, B. et al. A role for preadipocytes as macrophage-like cells. FASEB J. 13, 305–312 (1999).

    Article  CAS  Google Scholar 

  22. White, P. a. M. A. Inflammation-Induced Insulin Resistance in Obesity (Human Kinetics, 2008).

    Google Scholar 

  23. De Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    Article  CAS  Google Scholar 

  24. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  Google Scholar 

  25. Lee, Y. H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    Article  CAS  Google Scholar 

  26. Birsoy, K. et al. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development 138, 4709–4719 (2011).

    Article  CAS  Google Scholar 

  27. Pillai, P. S., Reynolds, S. D., Chace, J. H. & Scott, D. W. Differential expression of a surface antigen recognized by a monoclonal antibody, J11d, on unprimed and primed B cells. J. Immunol. 137, 791–797 (1986).

    CAS  PubMed  Google Scholar 

  28. Mandrup, S., Loftus, T. M., MacDougald, O. A., Kuhajda, F. P. & Lane, M. D. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proc. Natl Acad. Sci. USA 94, 4300–4305 (1997).

    Article  CAS  Google Scholar 

  29. Tang, Q. Q., Otto, T. C. & Lane, M. D. Commitment of C3H10T1/2 pluripotentstem cells to the adipocyte lineage. Proc. Natl Acad. Sci. USA 101, 9607–9611 (2004).

    Article  CAS  Google Scholar 

  30. Birsoy, K. et al. Cellular program controlling the recovery of adipose tissue mass: an in vivo imaging approach. Proc. Natl Acad. Sci. USA 105, 12985–12990 (2008).

    Article  CAS  Google Scholar 

  31. Bachmeier, M. & Löffler, G. Influence of growth factors on growth and differentiation of 3T3-L1 preadipocytes in serum-free conditions. Eur. J. Cell Biol. 68, 323–329 (1995).

    CAS  PubMed  Google Scholar 

  32. Fitter, S., Vandyke, K., Gronthos, S. & Zannettino, A. C. Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogenesis and adiponectin secretion. J. Mol. Endocrinol. 48, 229–240 (2012).

    Article  CAS  Google Scholar 

  33. Harris, R. B. Role of set-point theory in regulation of body weight. FASEB J. 4, 3310–3318 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Jeffery, C. Church, D. Krause and V. Horsley for critical reading of the manuscript and valuable discussions. This work was supported by American Diabetes Association Award 7-12-JF-46, DERC pilot project grant DK045735 and NIDDK grant DK090489 to M.S.R. and NIDDK grant DK041096 to J. M. Friedman.

Author information

Authors and Affiliations

Authors

Contributions

R.B. and M.S.R. designed and performed experiments, analysed and interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Matthew S. Rodeheffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, R., Rodeheffer, M. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 15, 302–308 (2013). https://doi.org/10.1038/ncb2696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing