Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene Transfer to Cereals: An Assessment

Abstract

In the following review, I present an assessment of the realities and possibilities of effecting gene transfer to cereal crops. I discuss why Agrobacterium has been unsuccessful with cereals, what alternatives have been tested, the extent to which they have yielded transgenic plants, and their potential agronomic utility. The discussion, necessarily subjective, is framed within a rigid definition of what constitutes proof of gene integration, and the biological factors affecting transformation competence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gasser, C.S. and Fraley, R.T. 1989. Genetically engineering plants for crop improvement. Science 244: 1293–1299.

    Article  CAS  Google Scholar 

  2. Kahl, G. 1982. Molecular biology of wound healing: the conditioning phenomenon. In: Molecular Biology of Plant Tumors. G. Kahl, J. Schell (Eds.), p. 211–267, Academic Press, NY.

    Chapter  Google Scholar 

  3. Vasil, I.K. 1987. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol 128: 193–218.

    Article  Google Scholar 

  4. Hooykaas, P.J.J. 1989. Transformation of plant cells via Agrobacterium. Plant Mol. Biol. 13: 327–336.

    Article  CAS  Google Scholar 

  5. Klee, H.J. and Rogers, S.G. 1989. Plant gene vectors and transformation: Plant transformation systems based on the use of Agrobacterium tumefaciens. p. 2–25. In: Cell Culture and Somatic Cell Genetics. Vol. 6. Molecular Biology of Plant Nuclear Genes. Schell, J. and Vasil, I. K. (Eds.), Academic Press, San Diego.

    Google Scholar 

  6. Binns, A.N. 1990. Agrobacterium-mediated gene delivery and the biology of host range limitations. Physiol. Plant. 78(1), In press.

    Google Scholar 

  7. Tepfer, D. 1990. Genetic transformation using Agrobacterium rhizogenes. Physiol. Plant. 78(1), In press.

    Google Scholar 

  8. Graves, A.C.F. and Goldmann, S.L. 1986. The transformation of Zea mays seedlings via the Agrobacterium tumefaciens. Plant Mol. Biol. 7: 43–50.

    Article  CAS  Google Scholar 

  9. Schäfer, W., Gorz, A. and Kahl, G. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–532.

    Article  Google Scholar 

  10. King, P.J., Potrykus, I. and Thomas, E. 1978. In vitro genetics of cereals: problems and perspectives. Physiol. Vég. 16: 381–399.

    Google Scholar 

  11. Grimsley, N.H., 1990. Agroinfection. Physiol. Plant. 78(1), In press.

    Google Scholar 

  12. Gardner, R., Chonoles, K. and Owens, R. 1986. Potato spindle tuber viroid infections mediated by the Ti-plasmid of Agrobacterium tumefaciens. Plant Mol. Biol. 6: 221–228.

    Article  CAS  Google Scholar 

  13. Grimsley, N.H., Hohn, T., Davies, J.W., Hohn, B. 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Article  CAS  Google Scholar 

  14. Fütterer, J., Bonneville, J.M., Hohn, T. 1990. Cauliflower mosaic virus as a gene expression vector for plants. Physiol. Plant. 78(1), In press.

    Google Scholar 

  15. Brisson, N., Paszkowski, J., Penswick, J.R., Gronenborn, B., Potrykus, I. and Hohn, T. 1984. Expression of a bacterial gene in plants by using a viral vector. Nature 310: 511–514.

    Article  CAS  Google Scholar 

  16. Ahlquist, P. and Pacha, R.F. 1990. Gene amplification and expression by RNA viruses and potential for further application to plant gene transfer. Physiol. Plant. 78(1), In press.

    Google Scholar 

  17. Ahlquist, P., French, R., Bujarski, J.J. 1987. Molecular studies of brome mosaic virus using infectious transcripts from cloned cDNA. Adv. Virus Res. 32: 214–242.

    Google Scholar 

  18. Töpfer, R., Gronenborn, B., Schaefer, S., Schell, J. and Steinbiss, H.H. 1990. Expression of engineered wheat dwarf virus in seed derived embryos. Physiol. Plant. 78(1), In press.

    Google Scholar 

  19. Töpfer, R., Gronenborn, B., Schell, J. and Steinbiss, H.H. 1989. Uptake and transient expression of chimeric genes in seed-derived embryos. The Plant Cell 1: 133–139.

    Article  Google Scholar 

  20. Ledoux, L. and Huart, R. 1969. Fate of exogenous bacterial desoxyri-bonucleic acids in barley seedlings. J. Mol. Biol. 43: 243–262.

    Article  CAS  Google Scholar 

  21. Ledoux, L., Huart, R. and Jacobs, M. 1974. DNA-mediated genetic correction of thiaminless Arabidopsis thaliana. Nature 249: 17–21.

    Article  CAS  Google Scholar 

  22. Luo, Z. and Wu, R. 1988. A simple method for transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Reporter 6: 165–174.

    Article  CAS  Google Scholar 

  23. Caboche, M. 1990. Liposome-mediated transfer of nucleic acids in plant protoplasts. Physiol. Plant. 78(1), In press.

    Google Scholar 

  24. Gad, A.E., Rosenberg, N. and Altmann, A. 1990. Liposome-mediated gene delivery into plant cells. Physiol. Plant. 78(1), In press.

    Google Scholar 

  25. Ahokas, H. 1987. Transfection by DNA-associated liposomes evidenced at pea pollination. Hereditas 106: 129–138.

    Article  Google Scholar 

  26. Lucas, W.J., Lansing, A., deWet, J.R. and Walbot, V. 1990. Introduction of foreign DNA into walled plant cells via liposomes injected into the vacuole: a preliminary study. Physiol. Plant. 78(1), In press.

    Google Scholar 

  27. Paszkowski, J., Saul, M.W. and Potrykus, I. 1989. Plant gene vectors and genetic transformation: DNA-mediated direct gene transfer to plants. p. 52–68. In: Cell Culture and Somatic Cell Genetics of Plants. Vol. 6. Molecular Biology of Plant Nuclear Genes. Schell, J. and Vasil, I. K. (Eds.). Academic Press, San Diego.

    Google Scholar 

  28. Davey, M.R., Rech, E.L. and Mulligan, B.J. 1989. Direct DNA transfer to plant cells. Plant Mol. Biol. 13: 273–285.

    Article  CAS  Google Scholar 

  29. Potrykus, I., Shillito, R.D., Saul, M.W. and Paszkowski, J. 1985. Direct gene transfer. State of the art and future potential. Plant Mol. Biol. Rep. 3: 117–128.

    Article  CAS  Google Scholar 

  30. Paszkowski, J., Baur, M., Bogucki, A. and Potrykus, I. 1988. Gene targeting in plants. EMBO J. 7: 4021–4027.

    Article  CAS  Google Scholar 

  31. Shimamoto, K., Terada, R., Izawa, T. and Fujimoto, H. 1989. Fertile rice plants regenerated from transformed protoplasts. Nature 338: 274–276.

    Article  CAS  Google Scholar 

  32. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J.J. 1989. Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  Google Scholar 

  33. Vasil, I.K. 1988. Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology 6: 397–401.

    Google Scholar 

  34. Shillito, R.D., Carswell, G.K., Johnson, C.M., DiMiaio, S. and Harms, C.T. 1989. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.

    Google Scholar 

  35. Prioli, L.M. and Söndahl, M.R. 1989. Plant regeneration and recovery of fertile plants from protoplasts of maize. Bio/Technology 7: 589–594.

    Google Scholar 

  36. Potrykus, I. 1980. The old problem of protoplast culture: cereals. p. 243–254. In: Advances in protoplast research. Ferency, L., Farkas, G.L. (Eds.). Pergamon Press, Oxford.

    Google Scholar 

  37. Weber, G., Monajembashi, S., Greulich, K.O. and Wolfrum, J. 1990. Genetic changes induced in higher plant cells by a laser micro beam. Physiol. Plant. 78(1), In press.

    Google Scholar 

  38. Ahokas, H. 1989. Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor. Appl. Genet. 77: 469–472.

    Article  CAS  Google Scholar 

  39. Sanford, J.C. 1990. Biolistic plant transformation. Physiol. Plant. 78(1), In press.

    Google Scholar 

  40. Klein, T.M., Fromm, M.E., Gradziel, T. and Sanford, J.C. 1988. Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/Technology 6: 559–536.

    CAS  Google Scholar 

  41. McCabe, D.E., Swain, W.E., Martinell, B.J. and Christou, P. 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6: 923–926.

    Google Scholar 

  42. Christou, P., McCabe, D.E. and Swain, W.F. 1988. Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol. 87: 671–674.

    Article  CAS  Google Scholar 

  43. Neuhaus, G., Sopangenberg, G., Mittelsten-Scheid, O. and Schweiger, H.G. 1987. Transgenic rapeseed plants obtained by microinjection of DNA into microspore-derived proembryoids. Theor. Appl. Genet. 75: 30–36.

    Article  Google Scholar 

  44. Neuhaus, G. and Spangtenberg, G. 1990. Plant transformation by microinjection technique. Physiol. Plant. 78(1), In press.

    Google Scholar 

  45. De la Pena, A., Lörz, H. and Schell, J. 1987. Transgenic plants obtained by injecting DNA into young floral tillers. Nature 325: 274–276.

    Article  CAS  Google Scholar 

  46. Hess, D. 1987. Pollen based techniques in genetic manipulation. Int. Rev. Cytol. 107: 169–190.

    Google Scholar 

  47. DeWet, J.M.J., Bergquist, R.R., Harlan, J.R., Brink, D.E., Cohan, C.E., Newell, C.A. and DeWet, A.E. 1985. Exogenous DNA transfer in maize (Zea mays) using DNA-treated pollen. p. 197–209. In: Experimental Manipulation of Ovule Tissue. Chapman, G. P., Mantell, S. H., Daniels, W. (Eds.). Longman, London.

    Google Scholar 

  48. Ohta, Y. 1986. High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83: 715–719.

    Article  CAS  Google Scholar 

  49. Alwen, A., Eller, N., Kastler, M., Benito-Moreno, R.M. and Heberle-Bors, E. 1990. Potential of in vitro pollen maturation for gene transfer. Physiol. Plant. 78(1), In press.

    Google Scholar 

  50. Fromm, M.E., Taylor, L.P. and Walbot, V. 1986. Stable transformation of maize after electroporation. Nature 319: 791–793.

    Article  CAS  Google Scholar 

  51. Shillito, R.D., Saul, M.W., Paszkowski, J., Müller, M. and Potrykus, I. 1985. High frequency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Google Scholar 

  52. Lindsay, K. and Jones, M.K.G. 1990. Electroporation of cells. Physiol. Plant. 78(1), In press.

    Google Scholar 

  53. Potrykus, I. 1990. Gene transfer to plants: assessment and perspectives. Physiol. Plant 78(1), In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potrykus, I. Gene Transfer to Cereals: An Assessment. Nat Biotechnol 8, 535–542 (1990). https://doi.org/10.1038/nbt0690-535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0690-535

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing