Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Efficient Degradation of Trichloroethylene by a Recombinant Escherichia Coli

Abstract

We have identified a strain of Pseudomonas mendocina that oxidizes trichloroethylene (TCE) after growth in the presence of toluene. A DNA fragment from this organism, when introduced into the appropriate expression vector system, conferred upon Escherichia coli the ability to oxidize both toluene and TCE. The recombinant E. coli rapidly degrades TCE to carbon dioxide, chloride ion and simple water soluble metabolites and reduces the concentration of TCE in water as much as 1000–fold. The extensive degradation of TCE by the recombinant E. coli is due to genetic manipulations that uncouple the regulation of TCE degrading enzymes from growth and co metabolism of toluene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, R.E. and Guengerich, F.P. 1982. Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry 21:1090–1097.

    Article  CAS  PubMed  Google Scholar 

  2. Bouwer, E.J. and McCarty, P.L. 1983. Transformation of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kleopfer, R.D., Easley, D.M., Haas, B.B., Deihl, T.G., Jackson, D.E., and Wurrey, C.J. 1985. Anaerobic degradation of trichloroethylene in soil. Environ. Sci. Technol. 19:277–280.

    Article  CAS  PubMed  Google Scholar 

  4. Vogel, T.M. and McCarty, P. 1985. Biotransformation of tetrachloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49:1080–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson, J.T. and Wilson, B.H. 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49:242–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fogel, M.M., Taddeo, A.R., and Fogel, S. 1986. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51:720–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nelson, M.J.K., Montgomery, S.O., O'Neill, E.J., and Pritchard, P.H. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52:383–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nelson, M.J.K., Montgomery, S.O., Mahaffey, W.R., and Pritchard, P.H. 1987. Biodegradation of trichloroethylene and involvement of an aromatic degradative pathway. Appl. Environ. Microbiol. 53:949–954.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Richardson, K.L. and Gibson, D.T. 1984. A novel pathway for toluene oxidation in Pseudomonas mendocina. Abst. Ann. Mtg. Amer. Soc. Microbiol. 84:K54.

    Google Scholar 

  10. White, G.M. 1986. Metabolism of toluene and aromatic acids by strains of Pseudomonas. Ph.D. Dissertation, University of Texas, Austin, TX.

    Google Scholar 

  11. Wackett, L.P. and Gibson, D.T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas pulida. Appl. Environ. Microbiol. 54:1703–1708.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibson, D.T., Yeh, W.K., Liu, T.N., and Subramanian, V. 1982. Toluene dioxygenase: A multicomponent enzyme system from Pseudomonas putida Q, p. 51–62. In: Oxygenases and Oxygen Metabolism. M. Nozaki, S. Yamamoto, Y. Ishimura et al. (Eds.). Academic Press, New York.

    Google Scholar 

  13. Fürste, J.P., Pansegrau, W., Frank, R., Blöcker, H., Scholz, P., Bagdasarian, M., and Lanka, E. 1986. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131.

    Article  PubMed  Google Scholar 

  14. Burnette, W.N., Mar, V.L., Cieplak, W. et al. 1988. Direct expression of Bordetelia pertussis toxin subunits to high levels in Escherichia coli. Bio Technology 6:699–706.

    CAS  Google Scholar 

  15. Fieschko, J. and Ritch, T. 1986. Production of human alpha consensus interferon in recombinant Eschenchia coli. Chem. Eng. Commun. 45:229–240.

    Article  CAS  Google Scholar 

  16. Ensley, B.D., Osslund, T.P., Joyce, M., and Simon, M.J. 1988. Expression and complementation of naphthalene dioxygenase activity in Escherichia coli, p. 437–455. In: Microbial Metabolism and the Carbon Cycle. S.R. Hagedorn, R.S. Hansen and D.A. Kunz (Eds.). Harvard Academic Publishers, New York.

    Google Scholar 

  17. Dhoese, P., DeGreve, H., Decraemer, H., Schell, J., and Van Montagu, M. 1979. Rapid mapping of transposon insertions and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucleic Acids Res. 7:1837–1849.

    Article  Google Scholar 

  18. Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA. 77:7347–7351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yen, K.-M. and Gunsalus, I.C. 1982. Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. USA 79:874–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, R., Yen, KM. & Ensley, B. Efficient Degradation of Trichloroethylene by a Recombinant Escherichia Coli. Nat Biotechnol 7, 282–285 (1989). https://doi.org/10.1038/nbt0389-282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0389-282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing