Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

The Genetic Engineering of Two Commercial Potato Cultivars for Resistance to Potato Virus X

Abstract

We efficiently transformed the commercial cultivars of potato (Solanum tuberosum) Bintje, Desiree and Escort after optimizing the conditions for regeneration from potato tuber discs. For transformation, tuber discs were cocultivated with Agrobacterium tumefaciens using a disarmed binary vector system. This system allowed the introduction of a chimaeric gene encoding the coat protein (CP) of potato virus X (PVX) into two cultivars most susceptible to this virus, Bintje and Escort. Five transgenic plant lines with expression levels of CP higher than 0.1% of soluble leaf protein were analyzed for resistance to a challenging inoculation with PVX (1 μg/ml). We observed a delay in symptom development as well as a drastic reduction in the accumulation of virus. Furthermore, we found a correlation between the expression level of the CP–gene and the reduction in virus accumulation. Cytogenetic analysis of 62 independently obtained transgenic lines showed the normal tetraploid number of chromosomes (2n = 4x = 48) in 97 percent of the examined plants. Phenotypically all these plants appeared normal. One plant line exhibited an abnormal phenotype and contained about the octaploid number of chromosomes (4n ≈ 8x = 96). These results and preliminary data on morphological characteristics, as these are determined in the official variety registration procedure, indicate that potato cultivars can be genetically engineered to contain new desirable traits with preservation of their intrinsic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horsch, R.B., Fry, J.E., Hoffmann, N., Wallroth, M., Eichholtz, D., Rogers, S.G., and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227:1229–1231.

    Article  CAS  Google Scholar 

  2. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., and Fraley, R. 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumejanens. Plant Cell Reports 5:81–84.

    Article  CAS  Google Scholar 

  3. Fillatti, J.J., Kiser, J., Rose, R., and Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5:726–730.

    CAS  Google Scholar 

  4. Ooms, G. and Lenton, J.R. 1985. T-DNA genes to study plant development: precocious tuberisation and enhanced cytokinins in A. tumefaciens transformed potato. Plant Mol. Biol. 5:205–212.

    Article  CAS  Google Scholar 

  5. Ooms, G., Karp, A., and Roberts, J. 1983. From tumour to tuber; tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solarium luberosum cv. Maris Bard). Theor. Appl. Gen 66:169–172.

    Article  CAS  Google Scholar 

  6. Ooms, G., Burrell, M.M., Karp, A., Bevan, M., and Hille, J. 1987. Genetic transformation in two potato cultivars with T-DNA from disarmed Agrobacterium. Theor. Appl. Gen. 73:744–750.

    Article  CAS  Google Scholar 

  7. Sheerman, S. and Bevan, M.W. 1988. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Reports 7:13–16.

    Article  CAS  Google Scholar 

  8. Stiekema, W.J., Heidekamp, F., Louwerse, J.D., Verhoeven, H.A., and Dijkhuis, P. 1988. Introduction of foreign genes into potato cultivars Bintjc and Desiree using an Agrobacterium tumefaciens binary vector. Plant Cell Reports 7:47–50.

    Article  CAS  Google Scholar 

  9. Karp, A., Nelson, R.S., Thomas, E., and Bright, S.W.J. 1982. Chromosome variation in protoplast derived potato plants. Theor. Appl. Genet. 63:265–272.

    Article  CAS  Google Scholar 

  10. Gill, B.S., Kam-Morgan, L.M.W., and Shepard, J.F. 1987. Cytogenetic and phenotypic variation in mesophyll cell derived tetraploid potatoes. J. Heredity 78:15–20.

    Article  Google Scholar 

  11. Stols, A.L.H., Hill-Van der Meulen, G.W., and Toen, M.K.I. 1970. Electron microscopy of Nicotiana glutmosa leaf cells infected with potato virus X. Virology 40:168–170.

    Article  CAS  Google Scholar 

  12. Sonenberg, N., Shatkin, A.J., Riccardi, R.P., Rubin, M., and Goodman, R.M. 1978. Analysis of terminal structures of RNA from potato virus X. Nucleic Acids Research 5:2501–2521.

    Article  CAS  Google Scholar 

  13. Morozov, S., Yu, Zakchariev, V.M., Chernow, B.K., Prasolov, V.S., Koslov, Yu.V., Atabekov, J.G., and Skryabin, K.G. 1983. The analysis of the primary structure and localization of the coat protein gene on the genomic RNA of potato virus X. Dokladi Academi Nauk SSSR 271:211–215 (In Russian).

    CAS  Google Scholar 

  14. Huisman, M.J., Linthorst, H.J.M., Bol, J.F., and Cornelissen, B.J.C. 1988. The complete nucleotidc sequence of potato virus X reveals homologies at the amino acid level with various plus-stranded RNA viruses. J. Gen. Virol. 69:1789–1798.

    Article  CAS  Google Scholar 

  15. Powel Abel, P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., and Beachy, R.N. 1986. Delay of disease development in transgenic plants that express the lobacco mosaic virus coat protein gene. Science 232:738–743.

    Article  Google Scholar 

  16. Loesch-Fries, L.S., Merlo, D., Zinnen, T., Burhop, L., Hill, K., Krahn, K., Jarvis, N., Nelson, S., and Halk, E. 1987. Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J. 6:1845–1851.

    Article  CAS  Google Scholar 

  17. Turner, N.E., O'Connell, K.M., Nelson, R.S., Sanders, P.R., Beachy, R.N., Fraley, R.T., and Shah, D.M. 1987. Expression of alfalfa mosaic virus coal protein gene confers cross protection in transgenic tobacco and tomato plants. EMBO J. 6:1181–1188.

    Article  Google Scholar 

  18. Van Dun, C.M.P., Bol, J.F., and Van Vloten-Doting, L. 1987. Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology 159:299–305.

    Article  CAS  Google Scholar 

  19. Hemenway, C., Fang, R.X., Kaniewski, W., Chua, N.H., and Turner, N.E. 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7:1273–1280.

    Article  CAS  Google Scholar 

  20. Cuozzo, M., O'Connell, K.M., Kaniewski, W., Fang, R.X., Chua, N.H., and Tumer, N.E. 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6:549–557.

    CAS  Google Scholar 

  21. Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., and Leemans, J. 1985. Efficient octopine Ti plasmidderived vectors for Agrobacterium mediated gene transfer to plants. Nucleic Acids Research 13:4777–4788.

    Article  CAS  Google Scholar 

  22. Baulcombe, D.C., Saunders, G.R., Bevan, M.W., Mayo, M.A., and Harrison, B.D. 1986. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:446–449.

    Article  CAS  Google Scholar 

  23. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473–497.

    Article  CAS  Google Scholar 

  24. Hoekcma, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180.

    Article  Google Scholar 

  25. Ditta, G., Stanfield, S., Corbiu, D., and Helmski, D. 1980. Broad host range DNA cloning system for gram-negative bacteria: construction of a genebank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77:7347–7351.

    Article  CAS  Google Scholar 

  26. Bevan, M.W., Flavell, R.B., and Chilton, M.-D. 1983. Chimacric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187.

    Article  CAS  Google Scholar 

  27. Fraley, R.B., Rogers, S.G., Horsch, R.B., Sander, P.S., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Gallupi, R., Goldberg, S.B., Hoffman, N.L., and Woo, S.C. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80:4803–4807.

    Article  CAS  Google Scholar 

  28. Hooykaas, P.J.J., Klapwijk, P.M., Nuti, M.D., Schilperoort, R.A., and Rorsch, A. 1977. Transfer of the Agrobactenum tumefaciens Ti-plasmid to avirulent agrobacteria and to Rhiwbium ex plants. J. Gen. Microbiol. 98:477–484.

    Article  Google Scholar 

  29. Stachel, S.E., Messens, E., Van Montagu, M., and Zambryski, P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629.

    Article  Google Scholar 

  30. Reiss, B., Sprengel, R., Will, H., and Schaller, H. 1984. A new sensitive method for qualitative and quantitative assay of neomycin phospho-transferasc in crude cell extracts. Gene 30:217–223.

    Article  Google Scholar 

  31. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  Google Scholar 

  32. Dunsmuir, P., Smith, S.M., and Bedbrook, J. 1983. The major chlorophyll a/b-binding protein of Petunia is composed of several polypeptides encoded by a number of distinct nuclear genes. J. Mol. Appl. Genet. 2:285–300.

    CAS  PubMed  Google Scholar 

  33. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bactcriophage T4. Nature 227:680–685.

    Article  CAS  Google Scholar 

  34. UPOV, 1986. International Union for the protection of new varieties of plants. Guidelines for the conduct of tests for distinctness, homogeneity and stability of potato (Solanum luberosum)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekema, A., Huisman, M., Molendijk, L. et al. The Genetic Engineering of Two Commercial Potato Cultivars for Resistance to Potato Virus X. Nat Biotechnol 7, 273–278 (1989). https://doi.org/10.1038/nbt0389-273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0389-273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing