Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant Beneficial Bacteria

Abstract

Bacteria associated with the plant rhizosphere may have beneficial effects on plant growth by providing nutrients and growth factors, or by producing antibiotics and siderophores, which antagonize phytopathogenic fungi and bacteria. There is considerable experimental support for the idea that plant growth promoting bacteria may be used as bio–fertilizers or biological disease control agents to increase agricultural yields. Recent advances in our understanding of the molecular biology of the systems responsible for plant growth stimulation are opening the way to strain improvement by genetic engineering.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gussin, G.N., Ronson, C.W., and Ausubel, F.M. 1986. Regulation of nitrogen fixation genes. Annu. Rev. Genet. 20:567–591.

    Article  CAS  Google Scholar 

  2. Elmerich, C. 1984. Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Bio/Technology 2:967–978.

    CAS  Google Scholar 

  3. Okon, Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends in Biotechnol. 3:223–228.

    Article  Google Scholar 

  4. Goldstein, A.H. and Liu, S.T. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology 5:72–74.

    CAS  Google Scholar 

  5. Schroth, M.N. and Hancock, J.G. 1981. Selected topics in biological control. Ann. Rev. Microbiol. 35:453–476.

    Article  CAS  Google Scholar 

  6. Smiley, R.W. 1979. Wheat-rhizoplane Pseudomonads as antagonists of Gaeumannomyces graminis. Soil Biol. Biochem. 11:371–376.

    Article  CAS  Google Scholar 

  7. Burr, T.J. and Caesar, A. 1984. Beneficial plant bacteria. Critical Reviews in Plant Sciences 2:1–20.

    Article  Google Scholar 

  8. Weller, D.M. and Cook, R.J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology 73:463–469.

    Article  Google Scholar 

  9. Suslow, T.V. and Schroth, M.N. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206.

    Article  Google Scholar 

  10. Geels, R.P. and Schippers, B. 1983. Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopathology 108:193–206.

    Article  Google Scholar 

  11. Geels, F.P. and Schippers, B. 1983. Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. Phytopathology 108:207–214.

    Article  Google Scholar 

  12. Howell, C.R. and Stipanovic, R.D. 1979. Control of Rhizoctonia solani on cotton seedings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.

    Article  CAS  Google Scholar 

  13. Howell, C.R. and Stipanovic, R.D. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715.

    Article  CAS  Google Scholar 

  14. Kloepper, J.W. 1983. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and daughter tubers. Phytopathology 73:217–219.

    Article  Google Scholar 

  15. Xu, G.W. and Gross, D.C. 1986. Selection of fluorescent Pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology 76:414–422.

    Article  Google Scholar 

  16. Xu, G.W. and Gross, D.C. 1986. Field evaluating of the interactions among fluorescent Pseudomonads, Erwinia carotovora, and potato yields. 76:423–430.

  17. Suslow, T.V. and Schroth, M.N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111–115.

    Article  Google Scholar 

  18. Dupler, M. and Baker, R. 1984. Survival of Pseudomonas putida, a biological control agent, in soil. Phytopathology 74:195–200.

    Article  Google Scholar 

  19. Gagne, S., Antoun, H., and Richard, C. 1985. Inhibition de champignons phytopathogènes par des bactéries isolées du sol et de la rhizosphère de légumineuses. Can. J. Microbiol. 31:856–860.

    Article  Google Scholar 

  20. Leissinger, T. and Margraff, R. 1979. Secondary metabolites of the fluorescent Pseudomonads. Microbiol. Reviews 43:422–442.

    Google Scholar 

  21. Teintze, M., Hossain, M.B., Barnes, C.L., Leong, J., and van der Helm, D. 1981. Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochem. 20:6646–6657.

    Google Scholar 

  22. Neilands, J.B. 1982. Microbial envelope proteins related to iron. Ann. Rev. Microbiol. 36:285–309.

    Article  CAS  Google Scholar 

  23. Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N. 1980. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr. Microbiol. 4:317–320.

    Article  CAS  Google Scholar 

  24. Gurusiddaiah, S., Weller, D.M., Sarkar, A., and Cook, R.J. 1986. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrobial Agents and Chemotherapy 29:488–495.

    Article  CAS  Google Scholar 

  25. Gutterson, N.I., Layton, T.J., Ziegle, J.S., and Warren, G.J. 1986. Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent Pseudomonad. J. Bacteriol. 165:696–703.

    Article  CAS  Google Scholar 

  26. Lam, B.S., Strobel, G.A., Harrison, L.A., and Lam, S.T. 1987. Transposon mutagenesis and tagging of fluoresecent Pseudomonas: antimycotic production is necessary for control of Dutch elm disease. Proc. Natl. Acad. Sci. USA 84:6447–6451.

    Article  CAS  Google Scholar 

  27. Buyer, J.S. and Leong, J. 1986. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J. Biol. Chem. 261:791–794.

    CAS  PubMed  Google Scholar 

  28. Magazin, M., Moores, J., and Leong, J. 1986. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain. J. Biol Chem. 261:795–799.

    CAS  PubMed  Google Scholar 

  29. Vandenbergh, P.A., Gonzalez, C.F., Wright, A.M., and Kunka, B.S. 1983. Iron-chelating compounds produced by soil Pseudomonads: correlation with fungal growth inhibition. Appl. Environ. Microbiol. 46:128–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Misaghi, I.J., Stowell, L.J., Grogan, R.G., and Spearman, L.C. 1982. Fuhgistatic activity of water-soluble fluorescent pigments of fluorescent Pseudomonads. Phytopathology 72:33–36.

    Article  CAS  Google Scholar 

  31. Scher, F.M. and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573.

    Article  CAS  Google Scholar 

  32. Moores, J.C., Magazin, M., Ditta, G.S., and Leong, J. 1984. Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain. J. Bacteriol. 157:53–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marugg, J.D. van Spanje, M., Hoekstra, W.P.M., Schippers, B., and Weisbeek, P.J. 1985. Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J. Bacteriol. 164:563–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Marugg, J.D., Nielander, H.B., Horrevoets, A.J.G., van Megen, I., van Genderen, I., and Weisbeek, P.J. 1988. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358. Manuscript in press.

  35. Nester, E.W., Gordon, M.P., Amasino, R.M., and Yanofsky, M.F. 1984. Crown gall: A molecular physiological analysis. Annu. Rev. Plant Physiol. 35:387–413.

    Article  CAS  Google Scholar 

  36. Kerr, A. 1972. Biological control of crown gall: Seed inoculation. J. Appl. Bacteriol. 35:493.

    Article  Google Scholar 

  37. Kerr, A. and Htay, Khin 1974. Biological control of crown gall through bacteriocin production. Physioi. Pl. Pathol. 4:37.

    Article  CAS  Google Scholar 

  38. Htay, K. and Kerr, A. 1974. Biological control of crown gall: Seed and root inoculation. J. Appl. Bacteriol. 37:525–530.

    Article  CAS  Google Scholar 

  39. Moore, L.W. and Warren, G. 1979. Agrobacterium radiobacter strain 84 and biological control of crown gall. Ann. Rev. Phytopathol. 17:163–179.

    Article  Google Scholar 

  40. Roberts, W.P., Tate, M.E., and Kerr, A. 1977. Agrocin 84 is a 6-N-phosphoramidate of an adenine nucleotide analogue. Nature 265:379–380.

    Article  CAS  Google Scholar 

  41. Das, P.K., Basu, M., and Chatterjee, G.C. 1978. Studies on the mode of action of agrocin 84. J. Antibiot. 31:490–492.

    Article  CAS  Google Scholar 

  42. Engler, G., Holsters, M., van Montagu, M., Schell, J., Hernalsteens, J.P., and Schilperoort, R. 1975. Agrocin 84 sensitivity: A plasmid determined property of Agrobacterium tumefaciens. Molec. Gen. Genet. 138:345–349.

    Article  CAS  Google Scholar 

  43. Hendson, M., Askjaer, L., Thomson, J.A., and Van Montagu, M. 1983. Broad-host-range agrocin of Agrobacterium tumefaciens. Appl. and Environ. Microbiol. 45:1526–1532.

    CAS  Google Scholar 

  44. Thomson, J.A. 1986. The potential for biological control of crown gall disease on grapevines. Trends in Biotechnol. 4:219–224.

    Article  Google Scholar 

  45. Ellis, J.G., Kerr, A., von Montagu, M., and Schell, J. 1979. Agrobacterium genetic studies on agrocin 84 production and the biological control of crown gall. Physioi. Plant Pathol. 15:311–319.

    Article  Google Scholar 

  46. Cooksey, D.A. and Moore, L.W. 1982. Biological control of crown gall with an agrocin mutant of Agrobacterium radiobacter. Phytopathology 72:919–921.

    Article  CAS  Google Scholar 

  47. Ryder, M.H., Slota, J.E., Scarim, A., and Farrand, S.K. 1987. Genetic analysis of agrocin 84 production and immunity in Agrobacterium spp. J. Bacteriol. 169:4184–4189.

    Article  CAS  Google Scholar 

  48. Hendson, M. and Thomson, J.A. 1986. Expression of an agrocin-encoding plasmid of Agrobacterium tumefaciens in Rhizobium melitoti. J. Appl. Bacteriol. 60:147–154.

    Article  CAS  Google Scholar 

  49. Brill, W.J. 1985. Safety concerns and genetic engineering in agriculture. Science 227:381–384.

    Article  Google Scholar 

  50. Levine, M.A., Seidler, R., Borquin, A.W., Fowle, J.R., and Barkay, T. 1987. EPA developing methods to assess environmental release. Bio/Technology 5:38–45.

    Google Scholar 

  51. Drahos, D.J., Hemming, B.C., and McPherson, S. 1986. Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent Pseudomonads. Bio/Technology 4:439–444.

    CAS  Google Scholar 

  52. Klausner, A. 1984. Microbial insect control. Bio/Technology 2:408–416.

    Google Scholar 

  53. Obukowicz, M.G., Perlak, F.J., Kusano-Kretzmer, K., Mayer, E.J., Bolten, S.L., and Watrud, L.S. 1986. Tn 5-mediated integration of the delta-endotoxin gene form Bacillus thurigiensis into the chromosome of root-colonizing Pseudomonads. J. Bacteriol. 168:982–989.

    Article  CAS  Google Scholar 

  54. Obukowicz, M.G., Perlak, F.J., Kusano-Kretzmer, K. Mayer, E.J. Bolten, S.L., and Watrud, L.S. 1987. IS50L as a non-self transposable vector used to integrate the Bacillus thurigiensis delta-endotoxin gene into the chromosome of root-colonizing Pseudomonads. Gene 51:91–96.

    Article  CAS  Google Scholar 

  55. De Weger, L.A., Van der Vlugt, C.I.M., Wijfjes, A.H.M., Bakker, A.A., Schippers, B., and Lugtenberg, B. 1987. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 169:2769–2773.

    Article  CAS  Google Scholar 

  56. Karns, J.S., Kilbane, J.J., Chatterjee, D.K., and Chakrabarty, A.M. 1984. Microbial degradation of 2,4,5-trichlorophenoxyacetic acid and chlorophenols, p.3–21. In: Genetic Control Of Environmental Pollutants. G.S. Omenn and A. Hollaender (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, J. Plant Beneficial Bacteria. Nat Biotechnol 6, 282–286 (1988). https://doi.org/10.1038/nbt0388-282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0388-282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing