Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola

Abstract

At levels less than 1mM of soluble orthophosphate (Pi) E. herbicola solubilizes dicalcium phosphate (DCP) or hydroxyapatite (HAP) in the external culture media. E. coli is capable of solubilizing dicalcium phosphate but not hydroxyapatite. The mineral phosphate solubilizing (MPS) trait is induced (repressed) by low (high) levels of exogenous Pi. A cosmid library of E. herbicola genomic DNA was constructed in E. coli. Screening for the MPS trait resulted in the isolation of a recombinant clone that showed inducible/repressible hydroxapatite solubilization at a level comparable with E. herbicola. We propose that these genes play a role in bacterial phosphate starvation metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, G. 1980. Assessing organic phosphorus in soils, p. 411–428. In: The Role of Phosphorus in Agriculture. Khasawneh, F. E. et al. (eds.). ASA Publication, Madison, WI.

    Google Scholar 

  2. Bencini, D.A., Shanley, M.S., Wild, J.R., and O'Donovan, G.A. 1983. New assay for enzymatic phosphate release: application to aspartate transcarbamylase and other enzymes. Anal. Biochem. 132: 259–264.

    Article  CAS  PubMed  Google Scholar 

  3. Englestad, O.P. and Terman, G.L. 1980. Agronomic effectiveness of phosphate fertilizers, p. 331–329. In: The Role of Phosphorus in Agriculture. Khasawneh, F. E. et al. (eds.). ASA Publication, Madison, WI.

    Google Scholar 

  4. Epstein, E. 1972. Mineral Nutrition of Plants, p. 44. J. Wiley and Sons, Inc., New York.

  5. Fried, M. and Brosehart, H. 1967. The Soil-Plant System in Relation to Inorganic Mineral Nutrition, p. 545. Academic Press. New York.

  6. Hasenbuiller, R.L. 1972. Soil Science, Principles and practices, p. 268. W. C. Brown, Dubuque.

  7. Himeno, M., Shibata, T., Kawahara, Y., Hanaoka, Y., and Komano, T. 1984. Effect of polyethylene glycol in plasmid DNA solution on transformation of CaCl2-treated E. coli cells. Agric. Biol. Chem. 48: 657–662.

    CAS  Google Scholar 

  8. Hohn, B. 1979. In vitro packaging of lambda and cosmid DNA. 299–308. Methods in enzymology 68: 299–308.

    Article  CAS  PubMed  Google Scholar 

  9. Kado, C.I. and Liu, S.T. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Katznelson, H. and Bose, B. 1959. Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, rhizophere and non-rhizophere soil. Can. J. Microbiol. 5: 79–85.

    Article  CAS  PubMed  Google Scholar 

  11. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual, p. 265. Cold Spring Harbor. Laboratory, New York.

    Google Scholar 

  12. Morris, H., Schlesinger, M.J., Bracha, M., and Yagil, E. 1974. Plietropic effects of mutations involved in the regulation of E. coli K-12 alkaline phosphatase. J. Bacteriol. 119: 583–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozanne, P.G. 1980. Phosphate nutrition of plants—a general treatise, p. 559–585. In: The Role of Phosphorus in Agriculture. E. Khasawneh et al. (eds.). ASA Publication, Madison, WI.

    Google Scholar 

  14. Ruvkin, G.B. and Ausubel, F.M. 1981. A general method for site directed mutagenesis in prokaryotes. Nature 289: 85–88.

    Article  Google Scholar 

  15. Sample, E.C., Soper, R.J., and Racz, G.C. 1980. Reactions of phosphate fertilizers in soils, p. 263–304. In: The Role of Phosphorus in Agriculture, F. E. Khasawneh et al. (eds.). ASA Publication, Madison, WI.

    Google Scholar 

  16. Sperber, J.I. 1957. Solution of mineral phosphates by soil bacteria. Nature 180: 994–995.

    Article  CAS  PubMed  Google Scholar 

  17. Tisdale, S.L. and Nelson, W.L. 1975. Soil fertility and fertilizers, p. 201. MacMillan Publishing Co., New York.

  18. Vogelstein, B. and Gillespie, D. 1979. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA 76: 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wanner, B.L. and McSharry, R. 1982. Phosphate-controlled gene expression in E. coli K-12 using Mud 1-directed lacZ fusions. J. Mol. Biol. 158: 347–363.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, A., Liu, S. Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola. Nat Biotechnol 5, 72–74 (1987). https://doi.org/10.1038/nbt0187-72

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0187-72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing