Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Optimizing pyramided transgenic Bt crops for sustainable pest management

Abstract

Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival of susceptible pests on pyramids relative to their survival on non-Bt crop counterparts.
Figure 2: Negative association between relative proportion survival of susceptible insects on pyramids and redundant killing factor (RKF) (simple linear regression, slope = −0.61, intercept = 1.49, R2 = 35%, d.f. = 8, P = 0.036).
Figure 3: Structure of Cry1Aa, Cry2Aa, Cry3Aa and Cry3Bb as resolved by X-ray crystallography.
Figure 4: Association between amino acid sequence similarity of domain III between toxins in pyramids and index of multiplicative survival (IMS) for susceptible insects (simple linear regression, slope = 0.015, R2 = 51%, d.f. = 15, P = 0.0013).
Figure 5: Association between amino acid sequence similarity of domain II and cross-resistance ratio (CRR) (data from Supplementary Table 2).

Similar content being viewed by others

References

  1. James, C. Global status of commercialized biotech/GM Crops: 2013. ISAAA Briefs 46 (ISAAA: Ithaca, NY, 2013).

  2. Sivasupramaniam, S. et al. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. J. Econ. Entomol. 101, 546–554 (2008).

    Article  CAS  Google Scholar 

  3. Burkness, E.C., Dively, G., Patton, T., Morey, A.C. & Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crops 1, 337–343 (2010).

    Article  Google Scholar 

  4. Siebert, M.W. et al. Evaluation of corn hybrids expressing Cry1F, Cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. J. Econ. Entomol. 105, 1825–1834 (2012).

    Article  CAS  Google Scholar 

  5. Tabashnik, B.E., van Rensburg, J.B.J. & Carrière, Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J. Econ. Entomol. 102, 2011–2025 (2009).

    Article  CAS  Google Scholar 

  6. Adamczyk, J.J. Jr. & Gore, J. Laboratory and field performance of cotton containing Cry1Ac, Cry1F, and both Cry1Ac and Cry1F (Widestrike ®) against beet armyworm and fall armyworm larvae (Lepidoptera: Noctuidae). Flor. Entomol. 87, 427–432 (2004).

    Article  CAS  Google Scholar 

  7. National Research Council. The Impact of Genetically Engineered Crops on Farm Sustainability in the United States (National Academies Press, Washington, DC, 2010).

  8. Cattaneo, M.G. et al. Farm-scale evaluation of transgenic cotton impacts on biodiversity, pesticide use, and yield. Proc. Natl. Acad. Sci. USA 103, 7571–7576 (2006).

    Article  CAS  Google Scholar 

  9. Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).

    Article  CAS  Google Scholar 

  10. Carrière, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 100, 1519–1523 (2003).

    Article  Google Scholar 

  11. Wu, K.M., Lu, Y.H., Feng, H.Q., Jiang, Y.Y. & Zhao, J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678 (2008).

    Article  CAS  Google Scholar 

  12. Hutchison, W.D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).

    Article  CAS  Google Scholar 

  13. Tabashnik, B.E. et al. Suppressing resistance to Bt cotton with sterile insect releases. Nat. Biotechnol. 28, 1304–1307 (2010).

    Article  CAS  Google Scholar 

  14. Carpenter, J.E. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28, 319–321 (2010).

    Article  CAS  Google Scholar 

  15. Edgerton, M.D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).

    Article  CAS  Google Scholar 

  16. Shi, G., Chavas, J.P. & Lauer, J. Commercialized transgenic traits, maize productivity and yield risk. Nat. Biotechnol. 31, 111–114 (2013).

    Article  Google Scholar 

  17. Wolfenbarger, L.L. et al. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS ONE 3, e2118 (2008).

    Article  Google Scholar 

  18. van Frankenhuyzen, K. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J. Invertebr. Pathol. 114, 76–85 (2013).

    Article  CAS  Google Scholar 

  19. Tabashnik, B.E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).

    Article  CAS  Google Scholar 

  20. Tabashnik, B.E., Mota-Sanchez, D., Whalon, M.E., Hollingworth, R.M. & Carrière, Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J. Econ. Entomol. 107, 496–507 (2014).

    Article  CAS  Google Scholar 

  21. US Environmental Protection Agency. Current and previously registered section 3 PIP registrations. 〈http://www.epa.gov/pesticides/biopesticides/pips/pip_list.htm〉 (EPA, 2011).

  22. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).

    Article  CAS  Google Scholar 

  23. US Environmental Protection Agency. The Environmental Protection Agency's White Paper on Bt Plant-Pesticide Resistance Management. 〈http://www.epa.gov/EPA-PEST/1998/January/Day-14/paper.pdf〉 (EPA, 1998).

  24. Carrière, Y., Crowder, D.W. & Tabashnik, B.E. Evolutionary ecology of adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).

    Article  Google Scholar 

  25. US Environmental Protection Agency. Pesticides news story: EPA approves natural refuges for insect resistance management in Bollgard II cotton. 〈http://www.epa.gov/oppfead1/cb/csb_page/updates/2007/bollgard-cotton.html〉 (EPA, 2007).

  26. Tabashnik, B.E. & Gould, F. Delaying corn rootworm resistance to Bt crops. J. Econ. Entomol. 105, 767–776 (2012).

    Article  Google Scholar 

  27. Alyokhin, A. Scant evidence supports EPA's pyramided Bt corn refuge size of 5%. Nat. Biotechnol. 29, 577–578 (2011).

    Article  CAS  Google Scholar 

  28. Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans. Roy. Soc. B Biol. Sci. 353, 1777–1786 (1998).

    Article  CAS  Google Scholar 

  29. Onstad, D.W. & Meinke, L.J. Modeling evolution of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to transgenic corn with two insecticidal traits. J. Econ. Entomol. 103, 849–860 (2010).

    Article  Google Scholar 

  30. Gould, F. Simulation models for predicting durability of insect-resistance germ plasm: a deterministic diploid, two-locus model. Environ. Entomol. 15, 1–10 (1986).

    Article  Google Scholar 

  31. Brévault, T. et al. Potential shortfall of pyramided Bt cotton for resistance management. Proc. Natl. Acad. Sci. USA 110, 5806–5811 (2013).

    Article  Google Scholar 

  32. Tabashnik, B.E., Gassmann, A.J., Crowder, D.W. & Carrière, Y. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26, 199–202 (2008).

    Article  CAS  Google Scholar 

  33. McKenzie, J.A. & Batterham, P. The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol. Evol. 9, 166–169 (1994).

    Article  CAS  Google Scholar 

  34. Groeters, F.R. & Tabashnik, B.E. Roles of selection intensity, major genes, and minor genes in evolution of insecticide resistance. J. Econ. Entomol. 93, 1580–1587 (2000).

    Article  CAS  Google Scholar 

  35. Jurat-Fuentes, J.L. & Jackson, K.A. in Insect Pathology (Vega, F. & Kaya, H., eds.) 265–349 (Academic Press, San Francisco, 2012).

  36. Pardo-López, L., Soberón, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).

    Article  Google Scholar 

  37. Sisterson, M.S., Antilla, L., Carrière, Y., Ellers-Kirk, C. & Tabashnik, B.E. Effect of insect population size on evolution of resistance to transgenic crops. J. Econ. Entomol. 97, 1413–1424 (2004).

    Article  Google Scholar 

  38. Tabashnik, B.E., Gould, F. & Carrière, Y. Delaying evolution of resistance to transgenic crops by decreasing dominance and heritability. J. Evol. Biol. 17, 904–912 (2004).

    Article  CAS  Google Scholar 

  39. Crespo, A.L.B. et al. On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis . Pest Manag. Sci. 65, 1071–1081 (2009).

    Article  CAS  Google Scholar 

  40. Zhao, J.Z. et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 102, 8426–8430 (2005).

    Article  CAS  Google Scholar 

  41. Carrière, Y. et al. Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 775–780 (2012).

    Article  Google Scholar 

  42. US Environmental Protection Agency. Final report of the subpanel on Bacillus thuringiensis (Bt) plant-pesticides and resistance management. 〈http://www.epa.gov/scipoly/sap/meetings/1998/0298_mtg.html〉 (EPA, 1998).

  43. Brévault, T., Nibouche, S., Achaleke, J. & Carrière, Y. Assessing the role of non-cotton refuges in delaying Helicoverpa armigera resistance to Bt cotton in West Africa. Evol. Appl. 5, 53–65 (2012).

    Article  Google Scholar 

  44. Dutton, A., D'Alessandro, M., Romeis, J. & Bigler, F. Assessing expression of Bt-toxin (Cry1Ab) in transgenic maize under different environmental conditions. IOBC WPRS Bull. 27, 49–55 (2004).

    Google Scholar 

  45. Nguyen, H.T. & Jehle, J.A. Expression of Cry3Bb1 in transgenic corn MON88017. J. Agric. Food Chem. 57, 9990–9996 (2009).

    Article  CAS  Google Scholar 

  46. Caprio, M. Evaluating resistance management strategies for multiple toxins in the presence of external refuges. J. Econ. Entomol. 91, 1021–1031 (1998).

    Article  Google Scholar 

  47. Ferré, J. & van Rie, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis . Annu. Rev. Entomol. 47, 501–533 (2002).

    Article  Google Scholar 

  48. Crespo, A.L. et al. Cross-resistance and mechanism of resistance to cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European borer, Ostrinia nubilalis . J. Invertebr. Pathol. 107, 185–192 (2011).

    Article  CAS  Google Scholar 

  49. Carrière, Y. & Tabashnik, B.E. Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Soc. Lond. B 268, 1475–1480 (2001).

    Article  Google Scholar 

  50. Gould, F., Cohen, M.B., Bentur, J.S., Kennedy, G.G. & Van Duyn, J. Impact of small fitness costs on pest adaptation to crop varieties with multiple toxins: a heuristic model. J. Econ. Entomol. 99, 2091–2099 (2006).

    Article  CAS  Google Scholar 

  51. Alphey, N., Coleman, P.G., Bonsall, M.B. & Alphey, L. Proportions of different habitat types are critical to the fate of a resistance allele. Theor. Ecol. 1, 103–115 (2008).

    Article  Google Scholar 

  52. Crowder, D.W. & Carrière, Y. Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies. J. Theor. Biol. 261, 423–430 (2009).

    Article  Google Scholar 

  53. Gassmann, A.J., Carrière, Y. & Tabashnik, B.E. Fitness costs of insect resistance to Bacillus thuringiensis . Annu. Rev. Entomol. 54, 147–163 (2009).

    Article  CAS  Google Scholar 

  54. Williams, J.L. et al. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae. PLoS ONE 6, e21863 (2011).

    Article  CAS  Google Scholar 

  55. Downes, S., Parker, T. & Mahon, R. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II® Cotton. PLoS ONE 5, e12567 (2010).

    Article  Google Scholar 

  56. Jackson, R.E., Bradley, J.R. Jr., Van Duyn, J.W. & Gould, F. Comparative production of Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic cotton expressing either one or two Bacillus thuringiensis proteins with and without insecticide oversprays. J. Econ. Entomol. 97, 1719–1725 (2004).

    Article  CAS  Google Scholar 

  57. Burd, A.D., Gould, F., Bradley, J.R., Van Duyn, J.W. & Moar, W.J. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J. Econ. Entomol. 96, 137–142 (2003).

    Article  CAS  Google Scholar 

  58. Jackson, R.E., Gould, F., Bradley, J.R. Jr. & Van Duyn, J.W. Genetic variation for resistance to Bacillus thuringiensis toxins in Helicoverpa zea (Lepidoptera: Noctuidae) in eastern North Carolina. J. Econ. Entomol. 99, 1790–1797 (2006).

    Article  CAS  Google Scholar 

  59. Ali, M.I. & Luttrell, R.G. Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. J. Econ. Entomol. 100, 921–931 (2007).

    Article  CAS  Google Scholar 

  60. Gao, Y., Wu, K. & Gould, F. Cry2Ab tolerance response of Helicoverpa armigera (Lepidoptera: Noctuidae) populations from Cry1Ac cotton planting region. J. Econ. Entomol. 102, 1217–1223 (2009).

    Article  CAS  Google Scholar 

  61. An, J. et al. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region. J. Econ. Entomol. 103, 2169–2173 (2010).

    Article  Google Scholar 

  62. Gassmann, A.J. et al. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc. Natl. Acad. Sci. USA 111, 5141–5146 (2014).

    Article  CAS  Google Scholar 

  63. Tabashnik, B.E. et al. Control of resistant pink bollworm by transgenic cotton with Bacillus thuringiensis toxin Cry2Ab. Appl. Environ. Microbiol. 68, 3790–3794 (2002).

    Article  CAS  Google Scholar 

  64. Heckel, D.G. et al. The diversity of Bt resistance genes in species of Lepidoptera. J. Invertebr. Pathol. 95, 192–197 (2007).

    Article  CAS  Google Scholar 

  65. Caccia, S. et al. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species. PLoS ONE 5, e9975 (2010).

    Article  Google Scholar 

  66. Bravo, A. et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 6, 17–26 (2013).

    Article  Google Scholar 

  67. Hernández, C.S. & Ferré, J. Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua . Appl. Environ. Microbiol. 71, 5627–5629 (2005).

    Article  Google Scholar 

  68. Tabashnik, B.E. et al. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62, 2839–2844 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. de Maagd, R.A., Bravo, A., Berry, C., Crickmore, N. & Schnepf, H.E. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37, 409–433 (2003).

    Article  CAS  Google Scholar 

  70. Gouffon, C., Van Vliet, A., Van Rie, J., Jansens, S. & Jurat-Fuentes, J.L. Binding sites for Bacillus thuringiensis Cry2Ae on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 77, 3182–3188 (2011).

    Article  CAS  Google Scholar 

  71. Matten, S.R., Frederick, R.J. & Reynolds, A.H. in Regulations of Agricultural Biotechnology: the United States and Canada (Worzniak, C.A. & McHughen, A., eds.) 175–267 (Springer, New York, 2012).

  72. Pigott, C.R. & Ellar, D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71, 255–281 (2007).

    Article  CAS  Google Scholar 

  73. Carmona, D. et al. Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins. PLoS ONE 6, e19952 (2011).

    Article  CAS  Google Scholar 

  74. Li, J.D., Carroll, J. & Ellar, D.J. Crystal structure of insecticidal ∂-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353, 815–821 (1991).

    Article  CAS  Google Scholar 

  75. Nelson, R.R. Stabilizing racial populations of plant pathogens by use of resistant genes. J. Environ. Qual. 1, 220–227 (1972).

    Article  Google Scholar 

  76. US Environmental Protection Agency Bt Crops Releasable PIP Registration List and Status, updated November 27, 2013, obtained via the Freedom of Information Act.

Download references

Acknowledgements

We thank J. Rick for help with searching the literature for cross-resistance data and F. Huang for providing data from one of his publications. This study was supported by US Department of Agriculture (USDA) Biotechnology Risk Assessment Grant Award 2011-33522-30729.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. analyzed the data. Y.C., N.C. and B.E.T. wrote the paper.

Corresponding author

Correspondence to Yves Carrière.

Ethics declarations

Competing interests

Y.C. has received funding from Pioneer, but Pioneer did not provide funding for this work. B.E.T. is coauthor of a patent on modified Bt toxins, “Suppression of Resistance in Insects to Bacillus thuringiensis Cry Toxins, Using Toxins that do not Require the Cadherin Receptor” (patent numbers: CA2690188A1, CN101730712A, EP2184293A2,EP2184293A4, EP2184293B1, WO2008150150A2, WO2008150150A3). Pioneer, Dow AgroSciences, Monsanto and Bayer CropScience did not provide funding to support this work, but may be affected financially by publication of this paper and have funded other work by B.E.T. N.C. does not declare any competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Tables 1–3 (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrière, Y., Crickmore, N. & Tabashnik, B. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33, 161–168 (2015). https://doi.org/10.1038/nbt.3099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3099

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research