Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decoding long nanopore sequencing reads of natural DNA

Abstract

Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental schematic and raw data.
Figure 2: A quadromer map predicts current levels for previously unmeasured DNA.
Figure 3: Raw data to alignment.
Figure 4: Alignments to reference sequence and hybrid reconstruction.

Similar content being viewed by others

References

  1. Shendure, J. & Lieberman Aiden, E. The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094 (2012).

    Article  CAS  Google Scholar 

  2. McCarthy, J.J., McLeod, H.L. & Ginsburg, G.S. Genomic medicine: a decade of successes, challenges, and opportunities. Sci. Transl. Med. 5, 189sr184 (2013).

    Article  Google Scholar 

  3. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  4. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  Google Scholar 

  5. Mitra, R.D., Shendure, J., Olejnik, J., Edyta Krzymanska, O. & Church, G.M. Fluorescent in situ sequencing on polymerase colonies. Anal. Biochem. 320, 55–65 (2003).

    Article  CAS  Google Scholar 

  6. Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  CAS  Google Scholar 

  7. Braslavsky, I., Hebert, B., Kartalov, E. & Quake, S.R. Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA 100, 3960–3964 (2003).

    Article  CAS  Google Scholar 

  8. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  9. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  10. Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  11. Manrao, E.A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  12. Wanunu, M. Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012).

    Article  Google Scholar 

  13. Derrington, I.M. et al. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA 107, 16060–16065 (2010).

    Article  CAS  Google Scholar 

  14. Wallace, E.V.B. et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. (Camb.) 46, 8195–8197 (2010).

    Article  CAS  Google Scholar 

  15. Manrao, E.A., Derrington, I.M., Pavlenok, M., Niederweis, M. & Gundlach, J.H. Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS ONE 6, e25723 (2011).

    Article  CAS  Google Scholar 

  16. Butler, T.Z., Pavlenok, M., Derrington, I.M., Niederweis, M. & Gundlach, J.H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. USA 105, 20647–20652 (2008).

    Article  CAS  Google Scholar 

  17. Cherf, G.M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-angstrom precision. Nat. Biotechnol. 30, 344–348 (2012).

    Article  CAS  Google Scholar 

  18. de Bruijn, N.G. A combinatorial problem. Koninklijke Netherlandse Akademie v. Wetenschappen 49, 758–764 (1946).

    Google Scholar 

  19. Laszlo, A.H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. USA 110, 18904–18909 (2013).

    Article  CAS  Google Scholar 

  20. Needleman, S.B. & Wunsch, C.D. A general method applicable to search for similarities in amino acid sequence of 2 proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  21. Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. Biological Sequence Analysis (Cambridge University Press, 2006).

    Google Scholar 

  22. Bashir, A. et al. A hybrid approach for the automated finishing of bacterial genomes. Nat. Biotechnol. 30, 701–707 (2012).

    Article  CAS  Google Scholar 

  23. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    Article  CAS  Google Scholar 

  24. Ribeiro, F.J. et al. Finished bacterial genomes from shotgun sequence data. Genome Res. 22, 2270–2277 (2012).

    Article  CAS  Google Scholar 

  25. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  Google Scholar 

  26. Baaken, G., Sondermann, M., Schlemmer, C., Ruhe, J. & Behrends, J.C. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8, 938–944 (2008).

    Article  CAS  Google Scholar 

  27. Malmstadt, N., Nash, M.A., Purnell, R.F. & Schmidt, J.J. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett. 6, 1961–1965 (2006).

    Article  CAS  Google Scholar 

  28. Schibel, A.E., Edwards, T., Kawano, R., Lan, W. & White, H.S. Quartz nanopore membranes for suspended bilayer ion channel recordings. Anal. Chem. 82, 7259–7266 (2010).

    Article  CAS  Google Scholar 

  29. Heitz, B.A., Jones, I.W., Hall, H.K. Jr., Aspinwall, C.A. & Saavedra, S.S. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. J. Am. Chem. Soc. 132, 7086–7093 (2010).

    Article  CAS  Google Scholar 

  30. Heitz, B.A. et al. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Langmuir 27, 1882–1890 (2011).

    Article  CAS  Google Scholar 

  31. Jain, T., Guerrero, R.J., Aguilar, C.A. & Karnik, R. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Anal. Chem. 85, 3871–3878 (2013).

    Article  CAS  Google Scholar 

  32. Yusko, E.C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to J.J. Bartlett and B. Tickman for their help in data acquisition. This work was supported by the National Institutes of Health, National Human Genome Research Institutes (NHGRI) $1,000 Genome Program Grants R01HG005115, R01HG006321 and R01HG006283 and graduate research fellowship DGE-0718124 from the National Science Foundation (to A.A.).

Author information

Authors and Affiliations

Authors

Contributions

A.H.L., I.M.D., A.A., J.S. and J.H.G. designed the research. H.B., A.A., I.C.N., J.M.C., J.M.S., R.D. and K.D. performed the research. A.H.L., I.M.D., B.C.R., H.B., I.C.N., J.M.C. and K.W.L. analyzed the data. A.H.L., J.H.G. and J.S. wrote the paper.

Corresponding author

Correspondence to Jens H Gundlach.

Ethics declarations

Competing interests

I.M.D. has a commercial interest with Illumina Inc. The University of Washington has filed a provisional patent on technologies described herein.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Notes 1–5 and Supplementary Tables 1–6 (PDF 4418 kb)

Supplementary Software

Software code. (ZIP 22513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laszlo, A., Derrington, I., Ross, B. et al. Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol 32, 829–833 (2014). https://doi.org/10.1038/nbt.2950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2950

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research