Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulating the stem cell niche for tissue regeneration

Abstract

The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition of the niche.

Kim Caesar/Nature Publishing Group

Figure 2: Representative schema illustrating stem cell niches.

Kim Caesar/Nature Publishing Group

Figure 3: Manipulation of the hematopoietic stem cell niche in vivo.

Kim Caesar/Nature Publishing Group

Similar content being viewed by others

References

  1. Watt, F.M. & Driskell, R.R. The therapeutic potential of stem cells. Phil. Trans. R. Soc. Lond. B 365, 155–163 (2010).

    Article  Google Scholar 

  2. Daley, G.Q. The promise and perils of stem cell therapeutics. Cell Stem Cell 10, 740–749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellegrini, G., Rama, P., Di Rocco, A., Panaras, A. & De Luca, M. Concise review: hurdles in a successful example of limbal stem cell-based regenerative medicine. Stem Cells 32, 26–34 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. Oldershaw, R.A. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int. J. Exp. Pathol. 93, 389–400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bretzner, F., Gilbert, F., Baylis, F. & Brownstone, R.M. Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8, 468–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wirth, E. III, Lebkowski, J.S. & Lebacqz, K. Response to Frederic Bretzner et al. “Target populations for first-in-human embryonic stem cell research in spinal cord injury”. Cell Stem Cell 8, 476–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Ramsden, C.M. et al. Stem cells in retinal regeneration: past, present and future. Development 140, 2576–2585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Farrar, C.A., Kupiec-Weglinski, J.W. & Sacks, S.H. The innate immune system and transplantation. Cold Spring Harb. Perspect. Med. 3, a015479 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  11. Hall, P.A. & Watt, F.M. Stem cells: the generation and maintenance of cellular diversity. Development 106, 619–633 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Watt, F.M. & Hogan, B.L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Morrison, S.J. & Scadden, D.T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fuchs, E. Finding one's niche in the skin. Cell Stem Cell 4, 499–502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan, D.W. & Barker, N. Intestinal stem cells and their defining niche. Curr. Top. Dev. Biol. 107, 77–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. van Es, J.H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Conover, J.C. & Notti, R.Q. The neural stem cell niche. Cell Tissue Res. 331, 211–224 (2008).

    Article  PubMed  Google Scholar 

  20. Gilbertson, R.J. & Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Simman, R., Priebe, C.J. Jr. & Simon, M. Reconstruction of aplasia cutis congenita of the trunk in a newborn infant using acellular allogenic dermal graft and cultured epithelial autografts. Ann. Plast. Surg. 44, 451–454 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Green, H. The birth of therapy with cultured cells. BioEssays 30, 897–903 (2008).

    Article  PubMed  Google Scholar 

  23. Watt, F.M. & Jensen, K.B. Epidermal stem cell diversity and quiescence. EMBO Mol. Med. 1, 260–267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arwert, E.N. et al. Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proc. Natl. Acad. Sci. USA 107, 19903–19908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Driskell, R.R., Clavel, C., Rendl, M. & Watt, F.M. Hair follicle dermal papilla cells at a glance. J. Cell Sci. 124, 1179–1182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plikus, M.V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujiwara, H. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Driskell, R.R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Olson, T.S. et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121, 5238–5249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Winkler, I.G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Rothenberg, M.E. et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology 142, 1195–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Kai, T. & Spradling, A. An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc. Natl. Acad. Sci. USA 100, 4633–4638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rompolas, P., Mesa, K.R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watt, F.M., Estrach, S. & Ambler, C.A. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr. Opin. Cell Biol. 20, 171–179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ambler, C.A. & Watt, F.M. Adult epidermal Notch activity induces dermal accumulation of T cells and neural crest derivatives through upregulation of jagged 1. Development 137, 3569–3579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butler, J.M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Srinivasan, S., Mahowald, A.P. & Fuller, M.T. The receptor tyrosine phosphatase Lar regulates adhesion between Drosophila male germline stem cells and the niche. Development 139, 1381–1390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winkler, I.G. et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18, 1651–1657 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Driessen, R.L., Johnston, H.M. & Nilsson, S.K. Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp. Hematol. 31, 1284–1291 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Toksoz, D. et al. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc. Natl. Acad. Sci. USA 89, 7350–7354 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schittenhelm, M.M. et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 66, 473–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Czechowicz, A., Kraft, D., Weissman, I.L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. To, L.B., Levesque, J.P. & Herbert, K.E. How I treat patients who mobilize hematopoietic stem cells poorly. Blood 118, 4530–4540 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Adams, G.B. et al. Therapeutic targeting of a stem cell niche. Nat. Biotechnol. 25, 238–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Lymperi, S. et al. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111, 1173–1181 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding, L. & Morrison, S.J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Silva-Vargas, V. et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell 9, 121–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Tanimura, S. et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8, 177–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Collins, C.A., Kretzschmar, K. & Watt, F.M. Reprogramming adult dermis to a neonatal state through epidermal activation of beta-catenin. Development 138, 5189–5199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Garber, K. Drugging the Wnt pathway: problems and progress. J. Natl. Cancer Inst. 101, 548–550 (2009).

    Article  PubMed  Google Scholar 

  64. Willert, K. & Nusse, R. Wnt proteins. Cold Spring Harb. Perspect. Biol. 4, a007864 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Habib, S.J. et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339, 1445–1448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alexandre, C., Baena-Lopez, A. & Vincent, J.P. Patterning and growth control by membrane-tethered Wingless. Nature 505, 180–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Siggins, S.L. et al. The Hedgehog receptor Patched1 regulates myeloid and lymphoid progenitors by distinct cell-extrinsic mechanisms. Blood 114, 995–1004 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Morris, J.P.t., Wang, S.C. & Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rudin, C.M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang, J.Y. et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N. Engl. J. Med. 366, 2180–2188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lane, S.W., Scadden, D.T. & Gilliland, D.G. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114, 1150–1157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frisch, B.J. et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119, 540–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, W., Li, K., Wei, W. & Ding, S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13, 270–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hartwell, K.A. et al. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nat. Chem. Biol. 9, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coleman, M.A. et al. Tolerance induction with gene-modified stem cells and immune-preserving conditioning in primed mice: restricting antigen to differentiated antigen-presenting cells permits efficacy. Blood 121, 1049–1058 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Rosenfeld, S.J., Kimball, J., Vining, D. & Young, N.S. Intensive immunosuppression with antithymocyte globulin and cyclosporine as treatment for severe acquired aplastic anemia. Blood 85, 3058–3065 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roth, T.L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Gay, D. et al. Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after wounding. Nat. Med. 19, 916–923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sabelström, H. et al. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342, 637–640 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Watt, F.M. & Huck, W.T. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14, 467–473 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Brizzi, M.F., Tarone, G. & Defilippi, P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24, 645–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Williams, C.K. et al. Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. Cancer Res. 68, 1889–1895 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Goodman, S.L. & Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci. 33, 405–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Byron, A. et al. Anti-integrin monoclonal antibodies. J. Cell Sci. 122, 4009–4011 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Evans, R.D. et al. A tumor-associated beta 1 integrin mutation that abrogates epithelial differentiation control. J. Cell Biol. 160, 589–596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lu, B. & Atala, A. Small molecules and small molecule drugs in regenerative medicine. Drug Discov. Today 19, 801–808. (2013).

    Article  PubMed  CAS  Google Scholar 

  90. Ren, J. et al. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J. Biomed. Mater. Res. A doi:10.1002/jbma.34985 (7 October 2013).

  91. Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8, 949–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Ko, I.K., Lee, S.J., Atala, A. & Yoo, J.J. In situ tissue regeneration through host stem cell recruitment. Exp. Mol. Med. 45, e57 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lampe, K.J. & Heilshorn, S.C. Building stem cell niches from the molecule up through engineered peptide materials. Neurosci. Lett. 519, 138–146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Uitto, J., Christiano, A.M., McLean, W.H. & McGrath, J.A. Novel molecular therapies for heritable skin disorders. J. Invest. Dermatol. 132, 820–828 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Mavilio, F. et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 12, 1397–1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Wong, T. et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 128, 2179–2189 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Wagner, J.E. et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N. Engl. J. Med. 363, 629–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abdul-Wahab, A., Petrof, G. & McGrath, J.A. Bone marrow transplantation in epidermolysis bullosa. Immunotherapy 4, 1859–1867 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Tamai, K. et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc. Natl. Acad. Sci. USA 108, 6609–6614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pasmooij, A.M., Jonkman, M.F. & Uitto, J. Revertant mosaicism in heritable skin diseases: mechanisms of natural gene therapy. Discov. Med. 14, 167–179 (2012).

    PubMed  Google Scholar 

  101. Lai-Cheong, J.E., McGrath, J.A. & Uitto, J. Revertant mosaicism in skin: natural gene therapy. Trends Mol. Med. 17, 140–148 (2011).

    Article  PubMed  Google Scholar 

  102. Tolar, J. et al. Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 134, 1246–1254 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Holst, J. et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat. Biotechnol. 28, 1123–1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Gilbert, P.M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Slove, S. et al. Potassium channel openers increase aortic elastic fiber formation and reverse the genetically determined elastin deficit in the BN rat. Hypertension 62, 794–801 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. North, T.E. et al. Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shin, J.W. et al. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 14, 81–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. & Chen, C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Kilian, K.A., Bugarija, B., Lahn, B.T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107, 4872–4877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Connelly, J.T., Mishra, A., Gautrot, J.E. & Watt, F.M. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation. PLoS ONE 6, e27259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kimura, W. & Sadek, H.A. The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc. Diagn. Ther. 2, 278–289 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. Muscari, C. et al. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J. Biomed. Sci. 20, 63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Speth, J.M., Hoggatt, J., Singh, P. & Pelus, L.M. Pharmacologic increase in HIF1alpha enhances hematopoietic stem and progenitor homing and engraftment. Blood 123, 203–207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Forristal, C.E. et al. Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121, 759–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Shyh-Chang, N., Daley, G.Q. & Cantley, L.C. Stem cell metabolism in tissue development and aging. Development 140, 2535–2547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spéder, P., Liu, J. & Brand, A.H. Nutrient control of neural stem cells. Curr. Opin. Cell Biol. 23, 724–729 (2011).

    Article  PubMed  CAS  Google Scholar 

  117. Signer, R.A. & Morrison, S.J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12, 152–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Janich, P. et al. Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell 13, 745–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Belloni, E. et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat. Genet. 14, 353–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Kode, A. et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ballen, K. et al. Phase II trial of parathyroid hormone after double umbilical cord blood transplantation. Biol. Blood Marrow Transplant. 18, 1851–1858 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Olnes, M.J. et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N. Engl. J. Med. 367, 11–19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hayes, H.B. et al. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology 82, 104–113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. McKay, W.F., Peckham, S.M. & Badura, J.M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int. Orthop. 31, 729–734 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Solchaga, L.A., Hee, C.K., Roach, S. & Snel, L.B. Safety of recombinant human platelet-derived growth factor-BB in Augment((R)) Bone Graft. J. Tissue Eng. 3, 2041731412442668 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wieman, T.J., Smiell, J.M. & Su, Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care 21, 822–827 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Cianfarani, F. et al. Granulocyte/macrophage colony-stimulating factor treatment of human chronic ulcers promotes angiogenesis associated with de novo vascular endothelial growth factor transcription in the ulcer bed. Br. J. Dermatol. 154, 34–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Fleming, H.E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  PubMed  CAS  Google Scholar 

  131. Williams, D.A., Rios, M., Stephens, C. & Patel, V.P. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature 352, 438–441 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for any omissions due to space constraints. S.W.L. is supported by research funding from the National Health and Medical Research Council, the Leukaemia Foundation of Australia and the Rhys Pengelly Fellowship in Leukaemia Research. D.A.W. is supported by National Institutes of Health DK062757. F.M.W. gratefully acknowledges the financial support of the Medical Research Council and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M Watt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, S., Williams, D. & Watt, F. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32, 795–803 (2014). https://doi.org/10.1038/nbt.2978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2978

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research