Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor

Subjects

Abstract

Exosomes show potential for cancer diagnostics because they transport molecular contents of the cells from which they originate. Detection and molecular profiling of exosomes is technically challenging and often requires extensive sample purification and labeling. Here we describe a label-free, high-throughput approach for quantitative analysis of exosomes. Our nano-plasmonic exosome (nPLEX) assay is based on transmission surface plasmon resonance through periodic nanohole arrays. Each array is functionalized with antibodies to enable profiling of exosome surface proteins and proteins present in exosome lysates. We show that this approach offers improved sensitivity over previous methods, enables portable operation when integrated with miniaturized optics and allows retrieval of exosomes for further study. Using nPLEX to analyze ascites samples from ovarian cancer patients, we find that exosomes derived from ovarian cancer cells can be identified by their expression of CD24 and EpCAM, suggesting the potential of exosomes for diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Label-free detection of exosomes with nPLEX sensor.
Figure 2: Exosome quantification and protein profiling with nPLEX.
Figure 3: Molecular profiling of ovarian cancer protein markers.
Figure 4: Profiling of ovarian cancer patient exosomes with nPLEX.

Similar content being viewed by others

References

  1. Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  Google Scholar 

  2. Vlassov, A.V., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948 (2012).

    Article  CAS  Google Scholar 

  3. Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell. Biol. 30, 3.22 (2006).

    Article  Google Scholar 

  4. Brolo, A.G. Plasmonics for future biosensors. Nat. Photonics 6, 709–713 (2012).

    Article  CAS  Google Scholar 

  5. Gordon, R., Sinton, D., Kavanagh, K.L. & Brolo, A.G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 41, 1049–1057 (2008).

    Article  CAS  Google Scholar 

  6. Im, H., Wittenberg, N.J., Lesuffleur, A., Lindquist, N.C. & Oh, S.-H. Membraneprotein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688–696 (2010).

    Article  CAS  Google Scholar 

  7. Escobedo, C. On-chip nanohole array based sensing: a review. Lab Chip 13, 2445–2463 (2013).

    Article  CAS  Google Scholar 

  8. Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008).

    CAS  PubMed  Google Scholar 

  9. Lee, H.J., Nedelkov, D. & Corn, R.M. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal. Chem. 78, 6504–6510 (2006).

    Article  CAS  Google Scholar 

  10. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. & Turberfield, A.J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    Article  CAS  Google Scholar 

  11. Im, H., Lesuffleur, A., Lindquist, N.C. & Oh, S.H. Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal. Chem. 81, 2854–2859 (2009).

    Article  CAS  Google Scholar 

  12. Yanik, A.A. et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).

    Article  CAS  Google Scholar 

  13. Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18, 1835–1840 (2012).

    Article  CAS  Google Scholar 

  14. Tassa, C. et al. Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. Bioconjug. Chem. 21, 14–19 (2010).

    Article  CAS  Google Scholar 

  15. Anglesio, M.S. et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS ONE 8, e72162 (2013).

    Article  CAS  Google Scholar 

  16. Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  Google Scholar 

  17. Runz, S. et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol. Oncol. 107, 563–571 (2007).

    Article  CAS  Google Scholar 

  18. Kristiansen, G. et al. CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am. J. Pathol. 161, 1215–1221 (2002).

    Article  CAS  Google Scholar 

  19. Bast, R.C. Jr. et al. CA 125: the past and the future. Int. J. Biol. Markers 13, 179–187 (1998).

    Article  CAS  Google Scholar 

  20. Canney, P.A., Wilkinson, P.M., James, R.D. & Moore, M. CA19–9 as a marker for ovarian cancer: alone and in comparison with CA125. Br. J. Cancer 52, 131–133 (1985).

    Article  CAS  Google Scholar 

  21. Meden, H. & Kuhn, W. Overexpression of the oncogene c-erbB-2 (HER2/neu) in ovarian cancer: a new prognostic factor. Eur. J. Obstet. Gynecol. Reprod. Biol. 71, 173–179 (1997).

    Article  CAS  Google Scholar 

  22. Aldovini, D. et al. M-CAM expression as marker of poor prognosis in epithelial ovarian cancer. Int. J. Cancer 119, 1920–1926 (2006).

    Article  CAS  Google Scholar 

  23. Psyrri, A. et al. Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clin. Cancer Res. 11, 8637–8643 (2005).

    Article  CAS  Google Scholar 

  24. Li, J. et al. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer 9, 244 (2009).

    Article  Google Scholar 

  25. Chu, A.Y., Litzky, L.A., Pasha, T.L., Acs, G. & Zhang, P.J. Utility of D2–40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod. Pathol. 18, 105–110 (2005).

    Article  CAS  Google Scholar 

  26. Kipps, E., Tan, D.S.P. & Kaye, S.B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat. Rev. Cancer 13, 273–282 (2013).

    Article  CAS  Google Scholar 

  27. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  Google Scholar 

  28. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  Google Scholar 

  29. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  30. Carey, M.S. et al. Functional proteomic analysis of advanced serous ovarian cancer using reverse phase protein array: TGF-beta pathway signaling indicates response to primary chemotherapy. Clin. Cancer Res. 16, 2852–2860 (2010).

    Article  CAS  Google Scholar 

  31. Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010).

    Article  CAS  Google Scholar 

  32. Palik, E.D. Handbook of Optical Constants of Solids. http://www.sciencedirect.com/science/book/9780125444156 (Elsevier, 1998).

  33. Sheehan, K.M. et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics 4, 346–355 (2005).

    Article  CAS  Google Scholar 

  34. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  Google Scholar 

  35. Yuan, H. et al. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).

    Article  Google Scholar 

  36. Hill, H.D. & Mirkin, C.A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc. 1, 324–336 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Skates (Massachusetts General Hospital) for helpful discussion on statistical analyses; M. Birrer for facilitating sample collection; K. Joyes for reviewing the manuscript. This work was supported in part by US National Institutes of Health (NIH) grants R01-HL113156 (H.L.), R01-EB010011 (R.W.), R01-EB00462605A1 (R.W.), T32CA79443 (R.W.), K12CA087723-11A1 (C.M.C) and National Heart, Lung, and Blood Institute contract HHSN268201000044C (R.W.). The device was fabricated using the facilities at the Center for Nanoscale Systems (CNS) at Harvard University (National Science Foundation award ECS-0335765).

Author information

Authors and Affiliations

Authors

Contributions

H.I., H.S., R.W. and H.L. designed the research. C.M.C. and R.W. designed the clinical study. H.I., H.S., Y.I.P., V.M.P. and C.M.C. performed the research. V.M.P. and C.M.C. collected the clinical samples. H.I., H.S., R.W. and H.L. analyzed data. H.I., H.S., C.M.C., R.W. and H.L. wrote the paper.

Corresponding authors

Correspondence to Ralph Weissleder or Hakho Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–4 (PDF 2898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, H., Shao, H., Park, Y. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32, 490–495 (2014). https://doi.org/10.1038/nbt.2886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing