Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Medicines from microbiota

Five years after the launch of the Human Microbiome Project, several ventures are seeking to capitalize on the clinical promise of microbiome modulation. Commercialization of drugs that influence the human flora poses some unique scientific, translational and regulatory challenges.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Journal articles and INPADOC (International Patent Documentation Center) families, including patent and patent applications referencing the terms microbiome, microbiota, gut flora, or gut microflora.
Figure 2: Broadening interest in the microbiome.
Figure 3: Spectrum of microbiome-derived modulators being pursued by biotech companies, ranging from ecosystem-level interventions to single-target approaches.

References

  1. Blumberg, R. & Powrie, F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4, 137rv7 (2012).

    Article  Google Scholar 

  2. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  3. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  Google Scholar 

  4. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  Google Scholar 

  5. Papa, E. et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowl syndrome. PLoS ONE 7, e39242 (2012).

    Article  CAS  Google Scholar 

  6. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  Google Scholar 

  7. Eckburg, P.B. et al. Diversity of the human intestinal flora. Science 308, 1635–1638 (2005).

    Article  Google Scholar 

  8. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  Google Scholar 

  9. Rakoff-Nahoum, S. et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  Google Scholar 

  10. Woese, C.R. et al. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  Google Scholar 

  11. Khoruts, A. et al. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  12. Britton, R.A. et al. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 20, 313–319 (2012).

    Article  CAS  Google Scholar 

  13. Gough, E. et al. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53, 994–1002 (2011).

    Article  Google Scholar 

  14. Kachrimanidou, M. et al. Clostridium difficile infection: a comprehensive review. Crit. Rev. Microbiol. 37, 178–187 (2011).

    Article  CAS  Google Scholar 

  15. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  Google Scholar 

  16. Lawley, T.D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).

    Article  CAS  Google Scholar 

  17. Yan, F. et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562–575 (2007).

    Article  CAS  Google Scholar 

  18. Dethlefsen, L. et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16s rRNA sequencing. PLoS Biology, 6 (11), 2008. doi:10.1371/journal.pbio.0060280

    Article  Google Scholar 

  19. Tannock, G.W. et al. A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology 156, 3354–3359 (2010).

    Article  CAS  Google Scholar 

  20. Kuczynski, J. et al. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 13, 47–58 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernat Olle.

Ethics declarations

Competing interests

O.B. is an employee of PureTech Ventures, a company that owns an interest in Vedanta Biosciences, and owns shares of PureTech Ventures and Vedanta Biosciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olle, B. Medicines from microbiota. Nat Biotechnol 31, 309–315 (2013). https://doi.org/10.1038/nbt.2548

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing