Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells

Abstract

To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs), we screened self-renewing, BMP4-treated and retinoic acid–treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures, including CXCR4+ cells, expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm, trophoblast and vascular endothelium, suggesting correspondence to gastrulation-stage primitive streak, chorion and allantois precursors, respectively. Functional studies in vitro and in vivo confirmed that ROR2+ cells produce mesoderm progeny, APA+ cells generate syncytiotrophoblasts and CD87+ cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of cell surface markers expressed by candidate progenitor populations.
Figure 2: Analysis of gene expression profiles in sorted hESC-derived populations.
Figure 3: Primitive endoderm characteristics of CXCR4+ cells representing progenitor group no.1.
Figure 4: ROR2+ progenitors (representing group no.2) exhibit characteristics of embryonic mesoderm and generate mesoderm tissues in vivo.
Figure 5: CD87+ progenitors (representing group no.3) exhibit characteristics of endothelial microvasculature.
Figure 6: APA+ progenitors (representing group no.4) exhibit trophoblast characteristics and produce syncytiotrophoblasts by cell fusion.
Figure 7: Similarities between hESC- and hiPSC-derived progenitors and their suggested correspondence to pre- and gastrulation-stage mouse embryonic precursors.

Similar content being viewed by others

References

  1. Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  2. Xu, R.H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).

    Article  CAS  Google Scholar 

  3. Bernardo, A.S. et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9, 144–155 (2011).

    Article  CAS  Google Scholar 

  4. D'Amour, K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  CAS  Google Scholar 

  5. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23, 1542–1550 (2005).

    Article  CAS  Google Scholar 

  6. Brons, I.G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  Google Scholar 

  7. Zorn, A.M. & Wells, J.M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    Article  CAS  Google Scholar 

  8. Pera, M.F. et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280 (2004).

    Article  CAS  Google Scholar 

  9. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    Article  CAS  Google Scholar 

  10. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  11. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  12. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  13. Sherwood, R.I. et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543–554 (2004).

    Article  CAS  Google Scholar 

  14. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725 (2000).

    Article  CAS  Google Scholar 

  15. Chan, C.K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    Article  CAS  Google Scholar 

  16. Chan, K.S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl. Acad. Sci. USA 106, 14016–14021 (2009).

    Article  CAS  Google Scholar 

  17. Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  Google Scholar 

  18. Fujiwara, T., Dunn, N.R. & Hogan, B.L. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc. Natl. Acad. Sci. USA 98, 13739–13744 (2001).

    Article  CAS  Google Scholar 

  19. Sirbu, I.O. & Duester, G. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat. Cell Biol. 8, 271–277 (2006).

    Article  CAS  Google Scholar 

  20. Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  Google Scholar 

  21. Hart, A.H., Hartley, L., Ibrahim, M. & Robb, L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev. Dyn. 230, 187–198 (2004).

    Article  CAS  Google Scholar 

  22. Pfister, S., Steiner, K.A. & Tam, P.P. Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr. Patterns 7, 558–573 (2007).

    Article  CAS  Google Scholar 

  23. McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213, 442–456 (1999).

    Article  CAS  Google Scholar 

  24. Rivera-Perez, J.A., Mager, J. & Magnuson, T. Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev. Biol. 261, 470–487 (2003).

    Article  CAS  Google Scholar 

  25. Lu, C.C., Brennan, J. & Robertson, E.J. From fertilization to gastrulation: axis formation in the mouse embryo. Curr. Opin. Genet. Dev. 11, 384–392 (2001).

    Article  CAS  Google Scholar 

  26. Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129, 2367–2379 (2002).

    CAS  PubMed  Google Scholar 

  27. Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).

    Article  CAS  Google Scholar 

  28. Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–4374 (2005).

    Article  CAS  Google Scholar 

  29. Bondue, A. et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3, 69–84 (2008).

    Article  CAS  Google Scholar 

  30. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  Google Scholar 

  31. Arnold, S.J. & Robertson, E.J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103 (2009).

    Article  CAS  Google Scholar 

  32. Aydin, S. et al. Influence of microvascular endothelial cells on transcriptional regulation of proximal tubular epithelial cells. Am. J. Physiol. Cell Physiol. 294, C543–C554 (2008).

    Article  CAS  Google Scholar 

  33. Akeson, A.L., Brooks, S.K., Thompson, F.Y. & Greenberg, J.M. In vitro model for developmental progression from vasculogenesis to angiogenesis with a murine endothelial precursor cell line, MFLM-4. Microvasc. Res. 61, 75–86 (2001).

    Article  CAS  Google Scholar 

  34. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 4391–4396 (2002).

    Article  CAS  Google Scholar 

  35. Anson-Cartwright, L. et al. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat. Genet. 25, 311–314 (2000).

    Article  CAS  Google Scholar 

  36. Yamada, K., Ogawa, H., Honda, S., Harada, N. & Okazaki, T. A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J. Biol. Chem. 274, 32279–32286 (1999).

    Article  CAS  Google Scholar 

  37. Salido, E.C., Yen, P.H., Barajas, L. & Shapiro, L.J. Steroid sulfatase expression in human placenta: immunocytochemistry and in situ hybridization study. J. Clin. Endocrinol. Metab. 70, 1564–1567 (1990).

    Article  CAS  Google Scholar 

  38. Sica, G.L. et al. B7–H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18, 849–861 (2003).

    Article  CAS  Google Scholar 

  39. Apps, R. et al. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta 32, 33–43 (2011).

    Article  CAS  Google Scholar 

  40. Rossant, J. & Cross, J.C. Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548 (2001).

    Article  CAS  Google Scholar 

  41. Garvey, W., Fathi, A., Bigelow, F., Carpenter, B. & Jimenez, C. Improved Movat pentachrome stain. Stain Technol. 61, 60–62 (1986).

    Article  CAS  Google Scholar 

  42. Chen, C.P., Liu, S.H., Lee, M.Y. & Chen, Y.Y. Heparan sulfate proteoglycans in the basement membranes of the human placenta and decidua. Placenta 29, 309–316 (2008).

    Article  CAS  Google Scholar 

  43. Peng, L., Huang, Y., Jin, F., Jiang, S.W. & Payne, A.H. Transcription enhancer factor-5 and a GATA-like protein determine placental-specific expression of the Type I human 3beta-hydroxysteroid dehydrogenase gene, HSD3B1. Mol. Endocrinol. 18, 2049–2060 (2004).

    Article  CAS  Google Scholar 

  44. Ito, N. et al. Ultrastructural localization of aminopeptidase A/angiotensinase and placental leucine aminopeptidase/oxytocinase in chorionic villi of human placenta. Early Hum. Dev. 71, 29–37 (2003).

    Article  CAS  Google Scholar 

  45. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  46. Palmieri, S.L., Peter, W., Hess, H. & Scholer, H.R. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166, 259–267 (1994).

    Article  CAS  Google Scholar 

  47. Yusuf, F., Rehimi, R., Dai, F. & Brand-Saberi, B. Expression of chemokine receptor CXCR4 during chick embryo development. Anat. Embryol. (Berl.) 210, 35–41 (2005).

    Article  CAS  Google Scholar 

  48. Wang, P., Rodriguez, R.T., Wang, J., Ghodasara, A. & Kim, S.K. Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8, 335–346 (2011).

    Article  Google Scholar 

  49. Solberg, H., Rinkenberger, J., Dano, K., Werb, Z. & Lund, L.R. A functional overlap of plasminogen and MMPs regulates vascularization during placental development. Development 130, 4439–4450 (2003).

    Article  CAS  Google Scholar 

  50. Matsuda, T. et al. Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech. Dev. 105, 153–156 (2001).

    Article  CAS  Google Scholar 

  51. Schwabe, G.C. et al. Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev. Dyn. 229, 400–410 (2004).

    Article  CAS  Google Scholar 

  52. Afzal, A.R. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat. Genet. 25, 419–422 (2000).

    Article  CAS  Google Scholar 

  53. Evseenko, D. et al. Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 107, 13742–13747 (2010).

    Article  CAS  Google Scholar 

  54. Baldwin, H.S. Early embryonic vascular development. Cardiovasc. Res. 31, Spec No, E34–E45 (1996).

    Google Scholar 

  55. Inman, K.E. & Downs, K.M. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 45, 237–258 (2007).

    Article  CAS  Google Scholar 

  56. Gurtner, G.C. et al. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev. 9, 1–14 (1995).

    Article  CAS  Google Scholar 

  57. Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829–3837 (1996).

    CAS  PubMed  Google Scholar 

  58. Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3, 932–943 (2002).

    Article  CAS  Google Scholar 

  59. Leksa, V. et al. TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. J. Cell Sci. 118, 4577–4586 (2005).

    Article  CAS  Google Scholar 

  60. Pierleoni, C., Castellucci, M., Kaufmann, P., Lund, L.R. & Schnack Nielsen, B. Urokinase receptor is up-regulated in endothelial cells and macrophages associated with fibrinoid deposits in the human placenta. Placenta 24, 677–685 (2003).

    Article  CAS  Google Scholar 

  61. Wang, Z.Z. et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol. 25, 317–318 (2007).

    Article  CAS  Google Scholar 

  62. Rossant, J. & Lis, W.T. Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev. Biol. 70, 255–261 (1979).

    Article  CAS  Google Scholar 

  63. Beddington, R.S. & Robertson, E.J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    CAS  PubMed  Google Scholar 

  64. Wilson, V., Rashbass, P. & Beddington, R.S. Chimeric analysis of T (Brachyury) gene function. Development 117, 1321–1331 (1993).

    CAS  PubMed  Google Scholar 

  65. Zhang, H. & Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986 (1996).

    CAS  PubMed  Google Scholar 

  66. Inman, K.E. & Downs, K.M. Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation. Gene Expr. Patterns 6, 783–793 (2006).

    Article  CAS  Google Scholar 

  67. Mitsui, T. et al. Hypertension and angiotensin II hypersensitivity in aminopeptidase A-deficient mice. Mol. Med. 9, 57–62 (2003).

    Article  CAS  Google Scholar 

  68. Mao, Q. BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm. Res. 25, 1244–1255 (2008).

    Article  CAS  Google Scholar 

  69. Tang, C. et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29, 829–834 (2011).

    Article  CAS  Google Scholar 

  70. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds provided by the California Institute of Regenerative Medicine (CIRM) (Comprehensive grants RC1-00354-1, RT2-02060). Y.S. was supported by a CDA award from the Human Frontier Science Organization (HFSPO, CDA0063/2007-C). C.T. and A.S.L. are supported by the Howard Hughes Medical Institute Medical Fellows and the Stanford Medical Scholars Program. Y.R. is supported by a Human Frontier Science Program (HFSP) Long Term Fellowship. M.D., C.T. and R.A. are supported by CIRM (Comprehensive grants RC1-00354-1, RT2-02060). We would like to thank C. Chan for pentachrome stainings.

Author information

Authors and Affiliations

Authors

Contributions

M.D., I.L.W. and Y.S. designed the experiments and wrote the manuscript. M.D., Y.S., C.T., R.A., Y.R., J.S., A.S.L. and A.R.M. performed experiments and analyzed data. All authors endorse the full content of this work.

Corresponding authors

Correspondence to Micha Drukker, Irving L Weissman or Yoav Soen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 and Supplementary Figures 1–5 (PDF 14216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drukker, M., Tang, C., Ardehali, R. et al. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat Biotechnol 30, 531–542 (2012). https://doi.org/10.1038/nbt.2239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2239

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research