Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tracking the progression of the human inner cell mass during embryonic stem cell derivation

Abstract

The different pluripotent states of mouse embryonic stem cells (ESCs) in vitro have been shown to correspond to stages of mouse embryonic development1,2,3,4,5,6. For human cells, little is known about the events that precede the generation of ESCs or whether they correlate with in vivo developmental stages. Here we investigate the cellular and molecular changes that occur during the transition from the human inner cell mass (ICM) to ESCs in vitro. We demonstrate that human ESCs originate from a post-ICM intermediate (PICMI), a transient epiblast-like structure that has undergone X-inactivation in female cells and is both necessary and sufficient for ESC derivation. The PICMI is the result of progressive and defined ICM organization in vitro and has a distinct state of cell signaling. The PICMI can be cryopreserved without compromising ESC derivation capacity. As a closer progenitor of ESCs than the ICM, the PICMI provides insight into the pluripotent state of human stem cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal and morphological pattern of ICM organization and ESC derivation.
Figure 2: The PICMI is a unique structure along the developmental continuum.
Figure 3: Molecular characterization of the PICMI and the hypoblast.

Similar content being viewed by others

References

  1. Han, D.W. et al. Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 143, 617–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi, K., Lopes, S.M., Tang, F. & Surani, M.A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kuijk, E.W., Chuva de Sousa Lopes, S.M., Geijsen, N., Macklon, N. & Roeien, B.A. The different shades of mammalian pluripotent stem cells. Hum. Reprod. Update 17, 254–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Nichols, J. & Smith, A. The origin and identity of embryonic stem cells. Development 138, 3–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hanna, J. et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, A.E. et al. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4, 103–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brons, I.G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Tesar, P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Tang, F., Lao, K. & Surani, M.A. Development and applications of single-cell transcriptome analysis. Nat. Methods 8, S6–S11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Najm, F.J. et al. Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8, 318–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reijo Pera, R.A. et al. Gene expression profiles of human inner cell mass cells and embryonic stem cells. Differentiation 78, 18–23 (2009).

    Article  PubMed  Google Scholar 

  13. O'Leary, T. et al. The influence of early embryo traits on human embryonic stem cell derivation efficiency. Stem Cells Dev. 785–793 (2011).

    Article  PubMed  Google Scholar 

  14. Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Rathjen, J. et al. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J. Cell Sci. 112, 601–612 (1999).

    CAS  PubMed  Google Scholar 

  16. Hanna, L.A., Foreman, R.K., Tarasenko, I.A., Kessler, D.S. & Labosky, P.A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650–2661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka, S.S. & Matsui, Y. Developmentally regulated expression of mil-1 and mil-2, mouse interferon-induced transmembrane protein like genes, during formation and differentiation of primordial germ cells. Mech. Dev. 119 (suppl. 1), S261–S267 (2002).

    Article  PubMed  Google Scholar 

  18. Pelton, T.A., Sharma, S., Schulz, T.C., Rathjen, J. & Rathjen, P.D. Transient pluripotent cell populations during primitive ectoderm formation: correlation of in vivo and in vitro pluripotent cell development. J. Cell Sci. 115, 329–339 (2002).

    CAS  PubMed  Google Scholar 

  19. Silva, S.S., Rowntree, R.K., Mekhoubad, S. & Lee, J.T. X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 4820–4825 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lengner, C.J. et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141, 872–883 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Chuva de Sousa Lopes, S.M. et al. X chromosome activity in mouse XX primordial germ cells. PLoS Genet. 4, e30 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Vallier, L. et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136, 1339–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vallier, L. et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS ONE 4, e6082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Tam, P.P.L. & Loebel, D.A.F. Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet. 8, 368–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Dravid, G. et al. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23, 1489–1501 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135, 2969–2979 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hough, S.R., Laslett, A.L., Grimmond, S.B., Kolle, G. & Pera, M.F. A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS ONE 4, e7708 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Carson, D.D. et al. Embryo implantation. Dev. Biol. 223, 217–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Chuva de Sousa Lopes, S.M. & Roelen, B.A. On the formation of germ cells: The good, the bad and the ugly. Differentiation 79, 131–140 (2010).

    Article  PubMed  Google Scholar 

  33. Chuva de Sousa Lopes, S.M. & Roelen, B.A. An overview on the diversity of cellular organelles during the germ cell cycle. Histol. Histopathol. 25, 267–276 (2010).

    Google Scholar 

  34. Stephenson, E.L., Braude, P.R. & Mason, C. International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen. Med. 2, 349–362 (2007).

    Article  PubMed  Google Scholar 

  35. Solter, D. & Knowles, B.B. Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099–5102 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strom, S. et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum. Reprod. 22, 3051–3058 (2007).

    Article  PubMed  Google Scholar 

  37. Chuva de Sousa Lopes, S.M. et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. 18, 1838–1849 (2004).

    Article  CAS  Google Scholar 

  38. Vandewoestyne, M. et al. Polar body mutation load analysis in a patient with A3243G tRNALeu(UUR) point mutation. Mitochondrion 11, 626–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Krenke, B.E. et al. Validation of a 16-locus fluorescent multiplex system. J. Forensic Sci. 47, 773–785 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Mukaida, T. et al. Vitrification of human blastocysts using cryoloops: clinical outcome of 223 cycles. Hum. Reprod. 18, 384–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Flemish Foundation for Scientific Research (FWO-Vlaanderen, grant FWO-3G062910). S.M.C.d.S.L. was supported by the Netherlands Organisation for Scientific Research (NWO) (Veni 916.76.015) and the Interuniversity Attraction Poles (PAI) (P6/20). P.D.S. is holder of a fundamental clinical research mandate by the Flemish Foundation for Scientific Research (FWO-Vlaanderen). We would like to thank Ferring Company (Aalst, Belgium) for financial support of this study. We thank C. Mummery for discussions and B. Roelen for comments on the manuscript; A. Egorova, C. Visseren and E. Mello-Aho for technical help with the qRT-PCR; A. Bernardo for technical help with the confocal; M. Van der Jeught and G. Duggal for help with culture maintenance; and the medical illustrator of Anatomy/LUMC, S. Blankevoort, for preparing Figure 3h.

Author information

Authors and Affiliations

Authors

Contributions

T.O'L. conceived, designed and performed experiments, analyzed data and wrote the paper. B.H. designed experiments and analyzed data. S.L. performed experiments. D.v.B. performed experiments and analyzed data. J.J.G. performed the biostatistical analysis. M.V. performed experiments. D.D. analyzed data. S.M.C.d.S.L. designed and performed experiments, analyzed data and wrote the paper. P.D.S. designed experiments and analyzed data.

Corresponding author

Correspondence to Thomas O'Leary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 and Supplementary Figs. 1–3 (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Leary, T., Heindryckx, B., Lierman, S. et al. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat Biotechnol 30, 278–282 (2012). https://doi.org/10.1038/nbt.2135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2135

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research