Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases

Abstract

Artificial endonucleases consisting of a FokI cleavage domain tethered to engineered zinc-finger DNA-binding proteins have proven useful for stimulating homologous recombination in a variety of cell types. Because the catalytic domain of zinc-finger nucleases (ZFNs) must dimerize to become active, two subunits are typically assembled as heterodimers at the cleavage site. The use of ZFNs is often associated with significant cytotoxicity, presumably due to cleavage at off-target sites. Here we describe a structure-based approach to reducing off-target cleavage. Using in silico protein modeling and energy calculations, we increased the specificity of target site cleavage by preventing homodimerization and lowering the dimerization energy. Cell-based recombination assays confirmed that the modified ZFNs were as active as the original ZFNs but elicit significantly less genotoxicity. The improved safety profile may facilitate therapeutic application of the ZFN technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based redesign of the FokI dimer interface.
Figure 2: In vitro cleavage specificity.
Figure 3: Single strand annealing assay.
Figure 4: Stimulation of homologous recombination with episomal and chromosomal target locus.
Figure 5: Stimulation of chromosomal homologous recombination by single and double variant ZFNs.
Figure 6: ZFN-associated genotoxicity.

Similar content being viewed by others

References

  1. Vasquez, K.M., Marburger, K., Intody, Z. & Wilson, J.H. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8403–8410 (2001).

    Article  CAS  Google Scholar 

  2. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  Google Scholar 

  3. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    Article  CAS  Google Scholar 

  4. Choulika, A., Perrin, A., Dujon, B. & Nicolas, J.F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1968–1973 (1995).

    Article  CAS  Google Scholar 

  5. Epinat, J.C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).

    Article  CAS  Google Scholar 

  6. Porteus, M.H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006).

    Article  CAS  Google Scholar 

  7. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  Google Scholar 

  8. Alwin, S. et al. Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617 (2005).

    Article  CAS  Google Scholar 

  9. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  Google Scholar 

  10. Liu, Q., Xia, Z., Zhong, X. & Case, C.C. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856 (2002).

    Article  CAS  Google Scholar 

  11. Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F., III . Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    Article  CAS  Google Scholar 

  12. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D. & Barbas, C.F., III . Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466–29478 (2001).

    Article  CAS  Google Scholar 

  13. Dreier, B. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 280, 35588–35597 (2005).

    Article  CAS  Google Scholar 

  14. Blancafort, P., Magnenat, L. & Barbas, C.F., III . Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).

    Article  CAS  Google Scholar 

  15. Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).

    Article  CAS  Google Scholar 

  16. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  Google Scholar 

  17. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998).

    Article  CAS  Google Scholar 

  18. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  Google Scholar 

  19. Silva, G.H., Belfort, M., Wende, W. & Pingoud, A. From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes. J. Mol. Biol. 361, 744–754 (2006).

    Article  CAS  Google Scholar 

  20. Sims, P.A., Menefee, A.L., Larsen, T.M., Mansoorabadi, S.O. & Reed, G.H. Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit. J. Mol. Biol. 355, 422–431 (2006).

    Article  CAS  Google Scholar 

  21. Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Specificity versus stability in computational protein design. Proc. Natl. Acad. Sci. USA 102, 12724–12729 (2005).

    Article  CAS  Google Scholar 

  22. Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. Structure of the multimodular endonuclease FokI bound to DNA. Nature 388, 97–100 (1997).

    Article  CAS  Google Scholar 

  23. Wah, D.A., Bitinaite, J., Schildkraut, I. & Aggarwal, A.K. Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10564–10569 (1998).

    Article  CAS  Google Scholar 

  24. Schymkowitz, J.W. et al. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc. Natl. Acad. Sci. USA 102, 10147–10152 (2005).

    Article  CAS  Google Scholar 

  25. van der Sloot, A.M. et al. Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc. Natl. Acad. Sci. USA 103, 8634–8639 (2006).

    Article  CAS  Google Scholar 

  26. Kölsch, V., Seher, T., Fernandez-Ballester, G.J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  Google Scholar 

  27. Li, X. et al. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J. Biol. Chem. 272, 28545–28549 (1997).

    Article  CAS  Google Scholar 

  28. Miller, D.G., Petek, L.M. & Russell, D.W. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol. Cell. Biol. 23, 3550–3557 (2003).

    Article  CAS  Google Scholar 

  29. Sargent, R.G., Brenneman, M.A. & Wilson, J.H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).

    Article  CAS  Google Scholar 

  30. Porteus, M.H., Cathomen, T., Weitzman, M.D. & Baltimore, D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23, 3558–3565 (2003).

    Article  CAS  Google Scholar 

  31. Smih, F., Rouet, P., Romanienko, P.J. & Jasin, M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23, 5012–5019 (1995).

    Article  CAS  Google Scholar 

  32. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  Google Scholar 

  33. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  Google Scholar 

  34. Banath, J.P. & Olive, P.L. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 63, 4347–4350 (2003).

    CAS  PubMed  Google Scholar 

  35. Catto, L.E., Ganguly, S., Milsom, S.E., Welsh, A.J. & Halford, S.E. Protein assembly and DNA looping by the FokI restriction endonuclease. Nucleic Acids Res. 34, 1711–1720 (2006).

    Article  CAS  Google Scholar 

  36. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J.K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172, 2391–2403 (2006).

    Article  CAS  Google Scholar 

  37. Guerois, R., Nielsen, J.E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Article  CAS  Google Scholar 

  38. Fernandez-Ballester, G. & Serrano, L. Prediction of protein-protein interaction based on structure. Methods Mol. Biol. 340, 207–234 (2006).

    CAS  PubMed  Google Scholar 

  39. Kiel, C. & Serrano, L. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J. Mol. Biol. 355, 821–844 (2006).

    Article  CAS  Google Scholar 

  40. Vijayakumar, M. et al. Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar. J. Mol. Biol. 278, 1015–1024 (1998).

    Article  CAS  Google Scholar 

  41. Cathomen, T. & Weitzman, M.D. A functional complex of adenovirus proteins E1B–55kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J. Virol. 74, 11407–11412 (2000).

    Article  CAS  Google Scholar 

  42. Han, J., Hendzel, M.J. & Allalunis-Turner, J. Quantitative analysis reveals asynchronous and more than double-strand break-associated histone H2AX phosphorylation after exposure to ionizing radiation. Radiat. Res. 165, 283–292 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eva Guhl for technical assistance, Ian Korf for his assistance with genomic searches, Tatjana Cornu for critical reading of the manuscript, and Caroline Lilley, Matthew Weitzman and Regine Heilbronn for valuable discussions. This work was supported by grants CA311/1-2 and CA311/2-1 from the German Research Foundation, DFG (T.C.), grant CA103651 from the National Cancer Institute, National Institutes of Health (D.J.S.), an EC NEST grant, Netsensor (L.S.), and an equipment grant from the Sonnenfeld-Stiftung, Berlin (T.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.S. performed protein modeling and in silico mutagenesis; M.S. and V.B. generated the single variant ZFNs; V.B. performed in vitro cleavage and SSA assays; M.S. carried out HR-based assays; J.B. generated the double variant ZFNs, performed immunoblotting and immunofluorescence, and established the genotoxicity assay; D.J.S. and T.C. conceived and directed the project, supervised M.S., V.B. and J.B., and wrote the manuscript.

Corresponding authors

Correspondence to David J Segal or Toni Cathomen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amino acid sequence of GZF1-N and GZF3-N. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczepek, M., Brondani, V., Büchel, J. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25, 786–793 (2007). https://doi.org/10.1038/nbt1317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing