Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regenerating the heart

Abstract

Cell-based cardiac repair offers the promise of rebuilding the injured heart from its component parts. Work began with committed cells such as skeletal myoblasts, but recently the field has expanded to explore an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and both mouse and human embryonic stem cells. A related strategy for cardiac repair involves cell mobilization with factors such as cytokines. Translation of cell-based approaches to the clinic has progressed rapidly, and clinical trials using autologous skeletal myoblasts and bone marrow cells are under way. Many challenges remain before the vision of healing an infarct by muscle regeneration can be realized. Future research is likely to focus on improving our ability to guide the differentiation of stem cells, control their survival and proliferation, identify factors that mediate their homing and modulate the heart's innate inflammatory and fibrotic responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Chimerism in a transplanted human heart.
Figure 3
Figure 4: ES cell grafts.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Pasumarthi, K.B. & Field, L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. von Harsdorf, R., Poole-Wilson, P.A. & Dietz, R. Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet 363, 1306–1313 (2004).

    Article  PubMed  Google Scholar 

  3. Field, L.J. Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann. NY Acad. Sci. 1015, 160–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Marelli, D., Desrosiers, C., el-Alfy, M., Kao, R.L. & Chiu, R.C. Cell transplantation for myocardial repair: an experimental approach. Cell Transplant. 1, 383–390 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Chiu, R.C., Zibaitis, A. & Kao, R.L. Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Ann. Thorac. Surg. 60, 12–18 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Koh, G.Y., Klug, M.G., Soonpaa, M.H. & Field, L.J. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J. Clin. Invest. 92, 1548–1554 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor, D.A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929–933 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Reinecke, H., Poppa, V. & Murry, C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol. 34, 241–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Reinecke, H., Minami, E., Poppa, V. & Murry, C.E. Evidence for fusion between cardiac and skeletal muscle cells. Circ. Res. 94, e56–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Reinecke, H., MacDonald, G.H., Hauschka, S.D. & Murry, C.E. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell Biol. 149, 731–740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubart, M., Soonpaa, M.H., Nakajima, H. & Field, L.J. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J. Clin. Invest. 114, 775–783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leobon, B. et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. USA 100, 7808–7811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Menasche, P. Skeletal myoblast transplantation for cardiac repair. Expert Rev. Cardiovasc. Ther. 2, 21–28 (2004).

    Article  PubMed  Google Scholar 

  14. Jain, M. et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 103, 1920–1927 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Menasche, P. et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41, 1078–1083 (2003).

    Article  PubMed  Google Scholar 

  16. Murry, C.E., Field, L.J. & Menasche, P. Cell-based cardiac repair: Reflections at the 10-year point. Circulation (in press).

  17. Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J. 25, 749–758 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Deb, A. et al. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247–1249 (2003).

    Article  PubMed  Google Scholar 

  19. Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  PubMed  Google Scholar 

  20. Glaser, R., Lu, M.M., Narula, N. & Epstein, J.A. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 106, 17–19 (2002).

    Article  PubMed  Google Scholar 

  21. Caplice, N.M. et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA 100, 4754–4759 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laflamme, M.A., Myerson, D., Saffitz, J.E. & Murry, C.E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Muller, P. et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106, 31–35 (2002).

    Article  PubMed  Google Scholar 

  24. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998); erratum: 281, 973 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Bittner, R.E. et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl) 199, 391–396 (1999).

    Article  CAS  Google Scholar 

  26. Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Nygren, J.M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lapidos, K.A. et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J. Clin. Invest. 114, 1577–1585 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kajstura, J. et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 96, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yoon, Y.S. et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest. 115, 326–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dimmeler, S., Zeiher, A.M. & Schneider, M.D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572–583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  PubMed  Google Scholar 

  37. Wollert, K.C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141–148 (2004).

    Article  PubMed  Google Scholar 

  38. Chen, S.L. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94, 92–95 (2004).

    Article  PubMed  Google Scholar 

  39. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Aicher, A., Zeiher, A.M. & Dimmeler, S. Mobilizing endothelial progenitor cells. Hypertension 45, 321–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Askari, A.T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Ceradini, D.J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Crosby, J.R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res. 87, 728–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Heeschen, C. et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109, 1615–1622 (2004).

    Article  PubMed  Google Scholar 

  45. Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110, 3136–3142 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).

    Article  PubMed  Google Scholar 

  48. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kinnaird, T. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ziegelhoeffer, T. et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sugano, Y. et al. Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc. Res. 65, 446–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Iwanaga, K. et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem. Biophys. Res. Commun. 325, 1353–1359 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Deten, A. et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc. Res. 65, 52–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Norol, F. et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 102, 4361–4368 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Orlic, D. et al. Cytokine mobilized CD34+ cells do not benefit rhesus monkeys following induced myocardial infarction. Blood 100, 29A (2002).

    Article  Google Scholar 

  58. Minatoguchi, S. et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109, 2572–2580 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Harada, M. et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 11, 305–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kang, H.J. et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363, 751–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Kuethe, F. et al. Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction. Dtsch. Med. Wochenschr. 129, 424–428 (2004).

    CAS  PubMed  Google Scholar 

  62. Tocci, A. & Forte, L. Mesenchymal stem cell: use and perspectives. Hematol. J. 4, 92–96 (2003).

    Article  PubMed  Google Scholar 

  63. Caplan, A.I. & Bruder, S.P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7, 259–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Pittenger, M.F. & Martin, B.J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95, 9–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Bittira, B., Kuang, J.Q., Al-Khaldi, A., Shum-Tim, D. & Chiu, R.C. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann. Thorac. Surg. 74, 1154–1159 (2002).

    Article  PubMed  Google Scholar 

  67. Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest 103, 697–705 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma, J. et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res. Cardiol. 100, 217–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Shake, J.G. et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73, 1919–1925 (2002).

    Article  PubMed  Google Scholar 

  70. Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  PubMed  Google Scholar 

  71. Le Blanc, K. & Ringden, O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 11, 321–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, R.C., Liao, L. & Han, Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J. Lab. Clin. Med. 143, 284–291 (2004).

    Article  PubMed  Google Scholar 

  73. El-Badri, N.S., Maheshwari, A. & Sanberg, P.R. Mesenchymal stem cells in autoimmune disease. Stem Cells Dev. 13, 463–472 (2004).

    Article  PubMed  Google Scholar 

  74. Bittira, B., Shum-Tim, D., Al-Khaldi, A. & Chiu, R.C. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg. 24, 393–398 (2003).

    Article  PubMed  Google Scholar 

  75. Beltrami, A.P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Dawn, B. et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl. Acad. Sci. USA 102, 3766–3771 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 100, 12313–12318 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin, C.M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 265, 262–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Cai, C.L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Laugwitz, K.L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Rust, E.M., Westfall, M.V., Samuelson, L.C. & Metzger, J.M. Gene transfer into mouse embryonic stem cell-derived cardiac myocytes mediated by recombinant adenovirus. In Vitro Cell Dev. Biol. Anim. 33, 270–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Westfall, M.V., Pasyk, K.A., Yule, D.I., Samuelson, L.C. & Metzger, J.M. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell Motil. Cytoskeleton 36, 43–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  88. Fijnvandraat, A.C. et al. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc. Res. 58, 399–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Robbins, J., Gulick, J., Sanchez, A., Howles, P. & Doetschman, T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11905–11909 (1990).

    CAS  PubMed  Google Scholar 

  90. Maltsev, V.A., Rohwedel, J., Hescheler, J. & Wobus, A.M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Maltsev, V.A., Wobus, A.M., Rohwedel, J., Bader, M. & Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y.M., Hartzell, C., Narlow, M. & Dudley, S.C. Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 106, 1294–1299 (2002).

    Article  PubMed  Google Scholar 

  93. Sugi, Y. & Lough, J. Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev. Dyn. 200, 155–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Schultheiss, T.M., Xydas, S. & Lassar, A.B. Induction of avian cardiac myogenesis by anterior endoderm. Development 121, 4203–4214 (1995).

    CAS  PubMed  Google Scholar 

  95. Rudy-Reil, D. & Lough, J. Avian precardiac endoderm/mesoderm induces cardiac myocyte differentiation in murine embryonic stem cells. Circ. Res. 94, e107–116 (2004).

    Article  PubMed  CAS  Google Scholar 

  96. Behfar, A. et al. Stem cell differentiation requires a paracrine pathway in the heart. Faseb J. 16, 1558–1566 (2002).

    Article  PubMed  Google Scholar 

  97. Kawai, T. et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J. 68, 691–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Yuasa, S. et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol. 23, 607–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Dell'Era, P. et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ. Res. 93, 414–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Kanno, S. et al. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12277–12281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Terami, H., Hidaka, K., Katsumata, T., Iio, A. & Morisaki, T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem. Biophys. Res. Commun. 325, 968–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Wobus, A.M. et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell Cardiol. 29, 1525–1539 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Zandstra, P.W. et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9, 767–778 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi, T. et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ventura, C., Zinellu, E., Maninchedda, E. & Maioli, M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ. Res. 92, 623–629 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Klug, M.G., Soonpaa, M.H., Koh, G.Y. & Field, L.J. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hidaka, K. et al. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. Faseb J. 17, 740–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Kolossov, E. et al. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. Faseb J. 19, 577–579 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Meyer, N., Jaconi, M., Landopoulou, A., Fort, P. & Puceat, M. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett. 478, 151–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Etzion, S. et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J. Mol. Cell Cardiol. 33, 1321–1330 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Min, J.Y. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296 (2002).

    Article  PubMed  Google Scholar 

  112. Min, J.Y. et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125, 361–369 (2003).

    Article  PubMed  Google Scholar 

  113. Hodgson, D.M. et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 287, H471–479 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. He, J.Q., Ma, Y., Lee, Y., Thomson, J.A. & Kamp, T.J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Ma, Y., He, J., Lee, Y., Kamp, J. & Thomson, J. Functional cardiomyocytes from four human embryonic cell lines. Meeting proceedings of the Keystone Symposium, Keystone, CO. From Stem Cells to Therapy, Abstract # 3038 (abstract) (2003).

    Google Scholar 

  117. Klug, M.G., Soonpaa, M.H. & Field, L.J. DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. 269, H1913–1921 (1995).

    CAS  PubMed  Google Scholar 

  118. Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–2363 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Laflamme, M.A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. (in press).

  120. Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111, 11–20 (2005).

    Article  PubMed  Google Scholar 

  122. Odorico, J.S., Kaufman, D.S. & Thomson, J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Zammaretti, P. & Jaconi, M. Cardiac tissue engineering: regeneration of the wounded heart. Curr. Opin. Biotechnol. 15, 430–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Zimmermann, W.H., Melnychenko, I. & Eschenhagen, T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25, 1639–1647 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Papadaki, M. et al. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101, 18129–18134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zimmermann, W.H. et al. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106, I151–157 (2002).

    PubMed  Google Scholar 

  128. Shimizu, T. et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Radisic, M. et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H507–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Muller-Ehmsen, J. et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell Cardiol. 34, 107–116 (2002).

    Article  PubMed  CAS  Google Scholar 

  131. Zhang, M. et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol. 33, 907–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Mangi, A.A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Neff, T. et al. Pharmacologically regulated in vivo selection in a large animal. Blood 100, 2026–2031 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Reinecke, H., Zhang, M., Bartosek, T. & Murry, C.E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100, 193–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Couzin, J. & Kaiser, J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 307, 1028 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E Murry.

Ethics declarations

Competing interests

The authors have had research sponsored by Geron and Guidant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laflamme, M., Murry, C. Regenerating the heart. Nat Biotechnol 23, 845–856 (2005). https://doi.org/10.1038/nbt1117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing