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There are excellent introductory books on
Bayesian analysis1–3, but the key ideas behind
the buzzword can be grasped quickly. Con-
sider the following gambling puzzle—one
that has ancient roots in the origins of both
classical and Bayesian probability theory.

The table game
Alice and Bob are playing a game in which the
first person to get 6 points wins. The way each
point is decided is a little strange. The Casino
has a pool table that Alice and Bob can’t see.
Before the game begins, the Casino rolls an
initial ball onto the table, which comes to rest
at a completely random position, which the
Casino marks. Then, each point is decided by
the Casino rolling another ball onto the table
randomly. If it comes to rest to the left of the
initial mark, Alice wins the point; to the right
of the mark, Bob wins the point. The Casino
reveals nothing to Alice and Bob except who
won each point.

Clearly, the probability that Alice wins a
point is the fraction of the table to the left of
the mark—call this probability p; and Bob’s
probability of winning a point is 1 – p. Because
the Casino rolled the initial ball to a random
position, before any points were decided every
value of p was equally probable. The mark is
only set once per game, so p is the same for
every point.

Imagine Alice is already winning 5 points to
3, and now she bets Bob that she’s going to
win. What are fair betting odds for Alice to
offer Bob? That is, what is the expected proba-
bility that Alice will win?

If p were known, this would be easy
Because Alice just needs one more point to
win, Bob only wins the game if he takes the
next three points in a row. The probability of
this is (1 – p)3; Alice will win on any other 
outcome, so the probability of her winning is 
[1 – (1 – p)3]. If Alice knew p, it would be easy
for her to calculate fair odds. For instance, if
the mark were exactly in the middle of the
table (or if this were the ‘coin game,’ where
points are decided by flipping a fair coin),
p would be 0.5; the probability that Bob would
win would be (1 – 0.5)3, or 1/8; and the proba-
bility that Alice would win would be 7/8; fair
odds would be 7:1.

What we’re doing here is calculating the
probability of observing some data (the out-
comes of up to the next three points) given a
probability model (the probability p). The
general notation for such a probability is
P(data|model), where the ‘|’ sign means ‘given’
or ‘conditional upon.’

Calculating the probability of an observed
outcome given known parameters and known
hypotheses tends to be a familiar process,
especially if we’re talking about outcomes of
flipping coins, rolling dice or drawing white
and black balls from urns. Interestingly,
though, the ‘share problem’ (A leads B 5:3 in a
coin-flipping game to 6; the game is inter-
rupted; how to fairly split the pot?) was con-
troversial for centuries after it was first
proposed in the 1300s. Published solutions
included 2:1 and 3:1 odds, and one mathe-
matician sniffed at another’s solution,“there is
an evident error in the determination of the
shares that even a child should recognize”—
but gave no answer himself4. (Statistics has
changed since the Renaissance; peer review is
much the same.) Blaise Pascal’s mid-1600s
correspondence with Fermat describing his
reasoning in deriving a correct 7:1 solution is
considered to be one of the origins of proba-
bility theory.

Inferring p from the data
The problem is that Alice and Bob don’t know
p. The very fact that Alice is ahead 5-3 is evi-
dence that the unknown position of the mark
is probably giving Alice an advantage, but the
numbers are small, and she can’t be sure.
Maybe the mark is in Bob’s favor and he’s just
been unlucky so far.

This sets up a scientific inference problem in
microcosm. We have a limited amount of data:
Alice is winning 5-3. We are interested in infer-
ring an unknown ‘hypothesis’: the value of p.
We want to use this inference to predict future
events: how probable is it that Alice will win?

One approach would be to make a maxi-
mum likelihood estimate of the unknown
parameter p. This is the frequency at which
Alice has won so far, 5/8. From this, we esti-
mate that Bob’s probability of winning is
(3/8)3 = 27/512, and Alice’s probability of win-
ning is 485/512; fair odds would be about 18:1.
But, as we will see, this is way off.

The Bayesian solution
The Bayesian approach is to write down
exactly the probability we want to infer, in
terms only of the data we know, and directly
solve the resulting equation — which forces us
to deal explicitly with all mathematical diffi-
culties, additional assumptions and uncertain-
ties that may arise. One distinctive feature of a
Bayesian approach is that if we need to invoke
uncertain parameters in the problem, we do
not attempt to make point estimates of these
parameters; instead, we deal with uncertainty
more rigorously, by integrating over all possi-
ble values that a parameter might assume.

Here, for instance, what we want to know is
the expected probability that Bob will win
(call it E). By definition, this is the weighted
average of (1 – p)3 over all possible values of p:

E(Bob wins)= ∫ (1–p)3 P (p | A = 5, B = 3) dp
1
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where the (1 – p)3 term is the probability that
Bob wins given a particular choice of p and the
P(p | A=5, B=3) term is the probability that
that particular choice of p is the correct one,
given the observed data that the score is 
Alice 5, Bob 3.

What is P(p | A=5, B=3)? The probability of
the parameter p given the data is not the same
thing as the more familiar calculation of
P(A=5, B=3 | p), the probability of the data
given a known parameter p. It is a so-called
inverse probability problem. Rather than
P(data | model), we need P(model | data).

The solution to inverse probability prob-
lems is the grandiosely named “Bayes’ theo-
rem”, which actually is a trivial algebraic
truism for two random variables X and Y:

or, in this case,

That is, the probability of a particular
choice of p given the data (the ‘posterior prob-
ability’ of p) is proportional to the probability
that we would get the observed data if that p
were true (the ‘likelihood’ of p) multiplied by
the a priori probability of this p relative to all
other possible values of p (the ‘prior probabil-
ity’ of p). To make this come out as a probabil-
ity, we divide by a summation over all possible
values of p; because p is a continuous variable,
this means an integration from p = 0 to p = 1.
The use of inverse probability calculations and
Bayes’ theorem is a second distinctive feature
of Bayesian approaches.

The likelihood term is the term we know
how to calculate; P(A=5,B=3 | p) is a binomial
(8!/5!3!)p5(1 – p)3. The prior term P(p) is
potentially problematic. By definition, P(p) is
a probability of p before any data have been
observed. How do we know anything about p
before we’ve seen any data?

A crucial feature of the ‘table game’ is that
P(p) is well-defined: the game is contrived
such that p is picked from a uniform distri-
bution. Because it’s uniform, it’s a constant,
and it cancels out of the Bayes equation;
after some algebraic rearrangement, we’re 
left with:

E(Bob wins) = 
∫

1

0
p 5 (1 – p)6 dp

∫
1

0
p 5 (1 – p)3 dp

P(p | A = 5, B = 3) = 
P(A = 5, B = 3 | p) P(p)

∫
1

0
P(A = 5, B = 3 | p) P(p) dp

P(X | Y) =   
P(Y | X)P(X) 

  =         
P(Y | X)P(X)

P(Y)                          P(Y | X′)P(X′)Σ       X′

It happens that these integrals have analytic
solutions. A ‘beta integral’ is

where Γ(x) is a gamma function, a generaliza-
tion of the better-known factorial function to
real numbers: Γ(n + 1) = n! for an integer n. So,
plugging in and solving, we get an answer of
(5!6!/12!)/(5!3!/9!) = 1/11 for Bob’s expected
probability of winning, and Alice’s expected
probability is 10/11. Thus, the Bayesian calcula-
tion estimates fair odds to be 10:1—which is
verifiably correct, as we’ll see below.

Difficulties with Bayesian statistics
Bayesian analysis (explicit probabilistic 
inference) is an attractively direct, formal
means of dealing with uncertainty in scientific
inference, but there are three important 
difficulties.

One difficulty is computational. Bayesian
calculations almost invariably require integra-
tions over uncertain parameters. These inte-
grations often have no analytical solution,
and instead require computationally intensive
numerical integration (such as Markov-
chain Monte Carlo methods). Until the advent
of computers, Bayesian approaches often
weren’t feasible.

Second, Bayesian methods require specify-
ing prior probability distributions, which are
often themselves unknown. Bayesian analyses
generally assume so-called ‘uninformative’
(often uniform) priors in such cases. Intro-
ducing subjective assumptions into an infer-
ence is unpalatable to some statisticians. The
usual counterargument is that non-Bayesian
methods make comparable assumptions
implicitly, and it’s probably better to have
one’s assumptions out in the open.

Third, though Bayes’ theorem is trivially
true for random variables X and Y, it is 
not clear to everyone that parameters or
hypotheses should be treated as random vari-
ables. Everyone accepts that we can talk about
the probability of observed data given a
model, where we mean the frequency with
which we would obtain those data in the limit
of infinite trials. But if we talk about the ‘prob-
ability’ of a one-time, nonrepeatable event
that is either true or false, there is no frequency
interpretation, and we are using probability 
in the sense of a confidence or a degree of
belief. This seems common sense, but it
remains controversial amongst good statisti-
cians. Using probability to represent a degree
of belief is a third distinctive feature of
Bayesian approaches.

∫
1

0 pm–1(1 – p)n–1 dp = 
 Γ(n)Γ(m)

 Γ(m + n)

My ‘table game’ is adapted from the key
example in the landmark, posthumous 1763
paper by the Reverend Thomas Bayes. The
beauty of Bayes’ table-and-balls analogy is that
it circumvented all three difficulties in one
stroke, making it possible to think clearly
about a verifiable inverse probability problem.
Bayes’ example provided a physical mecha-
nism for drawing a probability from a uni-
form prior; the resulting integrals have
analytic solutions; and every term has a fre-
quentist interpretation, because we can repeat
the physical process of rolling a trial ball to
choose p. Indeed, it is easy to verify that the
correct answer to the table game problem is
10:1—write a computer program to simulate
the table game many times, and count the fre-
quency with which Alice versus Bob ends up
winning after a match reaches a 5-3 score in
Alice’s favor.

Applications in computational biology
There is no shortage of problems in biology
where we want to infer something from
observed data, but the inference depends on
uncertain parameters or missing data in a
probability model. For example, in phyloge-
netic analysis, the probability of an evolution-
ary tree given some observed DNA sequences
is conditional on a multiple alignment, an
evolutionary model, and branch lengths on
the tree, all of which are subject to substantial
uncertainty, but for which traditional meth-
ods try to make single point estimates. Using
Bayesian methods, we can instead integrate
over varying degrees of uncertainty in differ-
ent aspects of the analysis. The robustness of
Bayesian methods in the face of partial infor-
mation and poorly determined parameters
lets us use more complicated, more realistic
probability models. This is proving to be
highly useful in the ‘post-genomic’ world of
analyzing large, noisy biological data sets.
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Wondering how some other
mathematical technique really works?
Send suggestions for future primers to
askthegeek@natureny.com.
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