Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fabrication of novel biomaterials through molecular self-assembly

Abstract

Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of various peptide materials.
Figure 2: Self-assembling peptides form a three-dimensional scaffold woven from nanofibers 10 nm in diameter.
Figure 3: Lipid, peptide and protein scaffold nanowires.
Figure 4: Microlenses and fiber-optics fabricated from protein scaffolds.
Figure 5: Metal nanocrystal–coupled biomolecule DNA.

Similar content being viewed by others

References

  1. Branden, C.-I. & Tooze, J. Introduction to Protein Structure edn. 2 (Garland, New York, 1999).

    Google Scholar 

  2. Gross, M. Travels to the Nanoworld: Miniature Machinery in Nature and Technology (Plenum, New York, 1999).

  3. Benyus, J.M. Biomimicry: Innovation Inspired by Nature (Quill–William Morrow, New York, 1997).

    Google Scholar 

  4. Sarikaya, M., Tamerler, C., Jen, A.K.-Y., Schulten, K., & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nat. Materials 2, 577–585 (2003).

    CAS  Google Scholar 

  5. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (John Wiley, New York, 1995).

  6. Roukes, M.L. et al. Understanding Nanotechnology (Warner Books, New York, 2002).

    Google Scholar 

  7. Ratner, M. & Ratner, D. Nanotechnology: A Gentle Introduction to the Next Big Idea (Prentice Hall, Upper Saddle River, New Jersey, USA, 2003)

    Google Scholar 

  8. Freitas, R. Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Austin, Texas, USA, 1999).

    Google Scholar 

  9. Zhang, S. Molecular self-assembly. in The Encyclopedia of Materials: Science & Technology (eds. Buschon, K.H. et al.) pp. 5822–5829 (Elsevier Science, Oxford, 2001).

    Google Scholar 

  10. Zhang, S., Marini, D., Hwang, W. & Santoso, S. Designing nanobiological materials through self-assembly of peptide & proteins. Curr. Opin. Chem. Biol. 6, 865–871 (2002).

    Google Scholar 

  11. Zhang, S. Building from bottom-up. Mater. Today 6, 20–27 (2003).

    CAS  Google Scholar 

  12. Gajdusek, D.C. Unconventional viruses and the origin and disappearance of kuru. Science 197, 943–960 (1977).

    CAS  Google Scholar 

  13. Fandrich, M., Fletcher, M.A. & Dobson, C.M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

    CAS  Google Scholar 

  14. Scheibel, T., Kowal, A.S., Bloom, J.D. & Lindquist, S.L. Bidirectional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11, 366–369 (2001).

    CAS  Google Scholar 

  15. Lynn, D.G. & Meredith, S.C. Review: model peptides and the physicochemical approach to β-amyloids. J. Struct. Biol. 130, 153–173 (2000).

    CAS  Google Scholar 

  16. West, M.W., Wang, W., Mancias, J.D., Beasley, J.R. & Hecht, M.H. De novo amyloid proteins from designed combinatorial libraries. Proc. Natl. Acad. Sci. USA 96, 11211–11216 (1999).

    CAS  Google Scholar 

  17. Hammarstrom, P., Schneider, F. & Kelly, J.W. Trans-suppression of misfolding in an amyloid disease. Science 293, 2459–2462 (2001).

    CAS  Google Scholar 

  18. Shtilerman, M.D., Ding, T.T. & Lansbury, P.T. Jr. Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 41, 3855–3860 (2002).

    CAS  Google Scholar 

  19. Reches, M., Porat, Y. & Gazit, E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem. 277, 35475–35480 (2002).

    CAS  Google Scholar 

  20. Perutz, M.F., Finch, J.T., Berriman, J. & Lesk, A. Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99, 5591–5595 (2002).

    CAS  Google Scholar 

  21. Jimenez, J.L., Tennent, G., Pepys, M. & Saibil, H.R. Structural diversity of ex vivo amyloid fibrils studied by cryo-electron microscopy. J. Mol. Biol. 311, 241–247 (2001).

    CAS  Google Scholar 

  22. Lindquist, S.L. & Henikoff, S. Self-perpetuating structural states in biology, disease, and genetics. Proc. Natl. Acad. Sci. USA 99 (Suppl. 4), 16377 (2002).

    CAS  Google Scholar 

  23. Dobson, C.M. Protein folding and its links with human disease. Biochem. Soc. Symp. 68, 1–26 (2001).

    CAS  Google Scholar 

  24. Hwang, W., Marini, D., Kamm, R. & Zhang, S. Supramolecular structure of helical ribbons self-assembled from a β-sheet peptide. J. Chem. Physics 118, 389–397 (2003).

    CAS  Google Scholar 

  25. Ryadnov, M.G. & Woolfson, D.N. Engineering the morphology of a self-assembling protein fibre. Nat. Mater. 2, 329–332 (2003).

    CAS  Google Scholar 

  26. Lee, S. & Eisenberg, D. Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat. Struct. Biol. 10, 725–730 (2003).

    CAS  Google Scholar 

  27. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805–808 (2003).

    CAS  Google Scholar 

  28. Israelachvili, J.N., Mitchell, D.J. & Ninham, B.W. J. Chem. Soc. Faraday Trans. II 72, 1525–1568 (1976).

    CAS  Google Scholar 

  29. Singh, A., Price, R., Schoen, P.E., Yager, P. & Schnur, J.M. Tubule formation by hetero bifunctional polymerizable lipids: synthesis and characterization. Polymer Preprints 27, 393–394 (1986).

    CAS  Google Scholar 

  30. Schnur, J.M. et al. Lipid based tubule microstructures. Thin Solid Films 152, 181–206 (1987).

    CAS  Google Scholar 

  31. Schnur, J.M. Lipid tubules: a paradigm for molecular engineered structures. Science 262, 1669–1676 (1993).

    CAS  Google Scholar 

  32. Rudolph, A.S., Calvert, J.M., Schoen, P.E. & Schnur, J.M. Technological development of lipid based tubule microstructures. Adv. Exp. Med. Biol. 238, 305–320 (1988).

    CAS  Google Scholar 

  33. Vauthey, S. Santoso, S., Gong, H., Watson, N. & Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 99, 5355–5360 (2002).

    CAS  Google Scholar 

  34. Santoso, S., Hwang, W., Hartman, H. & Zhang, S. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett. 2, 687–691 (2002).

    CAS  Google Scholar 

  35. von Maltzahn, G., Vauthey, S., Santoso, S. & Zhang, S. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19, 4332–4337 (2003).

    CAS  Google Scholar 

  36. Perutz, M.F. Glutamine repeats and neurodegenerative diseases. Brain Res. Bull. 50, 467 (1999).

  37. Perutz, M.F., Pope, B.J., Owen, D., Wanker, E.E. & Scherzinger, E. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid β-peptide of amyloid plaques. Proc. Natl. Acad. Sci. USA 99, 5596–5600 (2002).

    CAS  Google Scholar 

  38. Perutz, M.F. & Windle, A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143–144 (2001).

    CAS  Google Scholar 

  39. Whitesides, G.M., Mathias, J.P. & Seto, C.T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  Google Scholar 

  40. Mrksich, M. & Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25, 55–78 (1996).

    CAS  Google Scholar 

  41. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  Google Scholar 

  42. Piner, R.D., Zhu, J., Xu, F., Hong, S., & Mirkin, C.A. Dip-pen nanolithography. Science 283, 661–664 (1999).

    CAS  Google Scholar 

  43. Lee, K-B., Park, S-J., Mirkin, C.A., Smith, J.C., & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    CAS  Google Scholar 

  44. Demers, L.M. et al. Direct patterning of modified oligonucleotides on metals andinsulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    CAS  Google Scholar 

  45. Dillo, A.K., Ochsenhirt, S.E., McCarthy, J.B., Fields, G.B. & Tirrell, M. Adhesion of α5β1 receptors to biomimetic substrates constructed from peptide amphiphiles. Biomaterials 22, 1493–1505 (2001).

    CAS  Google Scholar 

  46. Leufgen, K., Mutter, M., Vogel, H. & Szymczak, W. Orientation modulation of a synthetic polypeptide in self-assembled monolayers: a TOF-SIMS study. J. Am. Chem. Soc. 125, 8911–8915 (2003).

    CAS  Google Scholar 

  47. Zhang, S. et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials 20, 1213–1220 (1999).

    CAS  Google Scholar 

  48. Zhang, S., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 90, 3334–3338 (1993).

    CAS  Google Scholar 

  49. Zhang, S. et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393 (1995).

    Google Scholar 

  50. Holmes, T., Delacalle, S., Su, X., Rich, A. & Zhang, S. Extensive neurite outgrowth and active neuronal synapses on peptide scaffolds. Proc. Natl. Acad. Sci. USA 97, 6728–6733 (2000).

    CAS  Google Scholar 

  51. Caplan, M., Schwartzfarb, E., Zhang, S., Kamm, R. & Lauffenburger, D. Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 23, 219–227 (2002).

    CAS  Google Scholar 

  52. Marini, D., Hwang, W., Lauffenburger, D.A., Zhang, S. & Kamm, R.D. Left-handed helical ribbon intermediates in the self-assembly of a β-sheet peptide. Nano Lett. 2, 295–299 (2002).

    CAS  Google Scholar 

  53. Kisiday, J. et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA 99, 9996–10001 (2002).

    CAS  Google Scholar 

  54. Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D. & Tirrell, D.A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    CAS  Google Scholar 

  55. Welsh, E.R. & Tirrell, D.A. Engineering the extracellular matrix: a novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules 1, 23–30 (2000).

    CAS  Google Scholar 

  56. Nowak, A.P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002).

    CAS  Google Scholar 

  57. Schneider, J.P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).

    CAS  Google Scholar 

  58. Pochan, D. et al. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J. Am. Chem. Soc. 125, in the press (2003).

  59. Hartgerink, J.D., Beniash, E. & Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Google Scholar 

  60. Hartgerink, J.D., Beniash, E. & Stupp, S.I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 99, 5133–5138 (2002).

    CAS  Google Scholar 

  61. Semino, C.E., Merok, J.R., Crane, G., Panagiotakos, G. & Zhang, S. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71, 262–270 (2003).

    CAS  Google Scholar 

  62. Semino, C.E., Kasahara, J., Hayashi, Y. & Zhang, S. (2003). Entrapment of hippocampal neural cells in self-assembling peptide scaffold. Tissue Eng. in the press (2003).

  63. Djalali, R., Chen, Y.F. & Matsui, H. Au nanowire fabrication from sequenced histidine-rich peptide. J. Am. Chem. Soc. 124, 13660–13661 (2002).

    CAS  Google Scholar 

  64. Matsui, H., Porrata, P. & Douberly, G.E. Protein tubule immobilization on self-assembled monolayers on Au substrates. Nano Lett. 1, 461–464 (2001).

    CAS  Google Scholar 

  65. Lvov, Y.M. et al. Imaging nanoscale patterns on biologically derived microstructures. Langmuir 16, 5932–5935 (2000).

    CAS  Google Scholar 

  66. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Google Scholar 

  67. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100, 4527–4532 (2003).

    CAS  Google Scholar 

  68. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    CAS  Google Scholar 

  69. Lee, S.W., Mao, C., Flynn, C.E. & Belcher, A.M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    CAS  Google Scholar 

  70. Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. USA 100, 6946–6951 (2003).

    CAS  Google Scholar 

  71. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

    CAS  Google Scholar 

  72. Sundar, V.C., Yablon, A.D., Grazul, J.L., Ilan, M. & Aizenberg, J. Fibre-optical features of a glass sponge. Nature 424, 899–900 (2003).

    CAS  Google Scholar 

  73. Aizenberg, J., Muller, D.A., Grazul, J.L. & Hamann, D.R. Direct fabrication of large micropatterned single crystals. Science 299, 1205–1208 (2003).

    CAS  Google Scholar 

  74. Bach, K. & Burkhardt, B. (eds.). Diatoms I: Shells in Nature and Technics (Karl Kramer Verlag, Stuttgart, Germany, 1984).

    Google Scholar 

  75. The Ribosome. Cold Spring Harbor Symposium Quantitative Biology vol. LXVI (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2001).

  76. Seeman, N.C. & Belcher, A.M. Emulating biology: building nanostructures from the bottom up. Proc. Natl. Acad. Sci. USA 99 (Suppl. 2), 6451–6455 (2002).

    CAS  Google Scholar 

  77. Furka, A. Combinatorial chemistry: 20 years on.... Drug Discov. Today 7, 1–4 (2002).

    Google Scholar 

  78. Blondelle, S.E., Takahashi, E., Houghten, R.A. & Perez-Paya, E. Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem. J. 313, 141–147 (1996).

    CAS  Google Scholar 

  79. Moffet, D.A. & Hecht, M.H. De novo proteins from combinatorial libraries. Chem. Rev. 101, 3191–3203 (2001).

    CAS  Google Scholar 

  80. Feldhaus, M.J. et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21, 163–170 (2003).

    CAS  Google Scholar 

  81. Leaky, R. & Lewin, R. The Sixth Extinction: Patterns of Life and the Future of Humankind (Doubleday, New York, 1995).

    Google Scholar 

  82. Hamad-Schifferli, K., Schwartz, J., Santos, A., Zhang, S. & Jacobson, J. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    Google Scholar 

  83. Lindquist, S. Presentation at the Third Multidisciplinary Workshop: Self-assembly of Peptides, Proteins in Biology, Engineering and Medicine, Crete, Greece, August 1–5, 2003.

  84. Selinger, J.V. & Schnur, J.M. Theory of chiral lipid tubules. Phys. Rev. Lett. 71, 4091–4094 (1993).

    CAS  Google Scholar 

  85. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl. Acad. Sci. USA 98, 11857–11862 (2001).

    CAS  Google Scholar 

  86. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24329–24332 (1999).

  87. Altman, M., Lee, P., Rich, A. & Zhang, S. Conformational behavior of ionic self-complementary peptides. Protein Sci. 9, 1095–1105 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

I thank Hidenori Yokoi for helping to organize the figures and Steve Santoso for critically reading the manuscript. I would also like to thank members of my laboratory, past and present, for making discoveries and conducting exciting research. I gratefully acknowledge the support by grants from the US Army Research Office, Office of Naval Research, Defense Advanced Research Project Agency (BioComputing), DARPA/Naval Research Labs; NSF-MIT BPEC and NSF CCR-0122419 to the MIT Media Lab's Center for Bits & Atoms; the US National Institutes of Health; the Whitaker Foundation; the DuPont–MIT Alliance; and Menicon, Ltd., Japan. The author also acknowledges the Intel Corp. for its educational donation of a computing cluster to the Center for Biomedical Engineering at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21, 1171–1178 (2003). https://doi.org/10.1038/nbt874

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing