Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor

Abstract

Plant productivity is greatly affected by environmental stresses such as drought, salt loading, and freezing. We reported previously that a cis -acting promoter element, the dehydration response element (DRE), plays an important role in regulating gene expression in response to these stresses. The transcription factor DREB1A specifically interacts with the DRE and induces expression of stress tolerance genes. We show here that overexpression of the cDNA encoding DREB1A in transgenic plants activated the expression of many of these stress tolerance genes under normal growing conditions and resulted in improved tolerance to drought, salt loading, and freezing. However, use of the strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive expression of DREB1A also resulted in severe growth retardation under normal growing conditions. In contrast, expression of DREB1A from the stress inducible rd29A promoter gave rise to minimal effects on plant growth while providing an even greater tolerance to stress conditions than did expression of the gene from the CaMV promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypes of the 35S:DREB1Aa, 35S:DREB1Ab, and 35S:DREB1Ac plants in relation to wild-type plants (pBI121).
Figure 2: Expression of DREB1A target gene mRNAs in 35S:DREB1A transgenic plants and in the wild-type controls.
Figure 3: Phenotypes of the rd29A:DREB1Aa and wild-type control plants (transformed with the vector pBI121) under control conditions.
Figure 4: Expression of the DREB1A and rd29A genes in 35S:DREB1A and rd29A:DREB1A transgenic plants.
Figure 5: (A) Freezing, drought, and salt stress tolerance of the 35S:DREB1Ab, 35S:DREB1Ac, and rd29A:DREB1Aa transgenic plants.

Similar content being viewed by others

References

  1. Shinozaki, K. & Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161–167 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Thomashow, M.F. in Arabidopsis. (eds Meyrowitz, E. & Somerville, C.) 807–834 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994).

    Google Scholar 

  3. Shinozaki, K. & Yamaguchi-Shinozaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327–334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ingram, J. & Bartels, D. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403 ( 1996).

    Article  CAS  Google Scholar 

  5. Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 2, 48–54 (1997).

    Article  Google Scholar 

  6. Holmberg, N. & Bulow, L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 3, 61 –66 (1998).

    Article  Google Scholar 

  7. Tarczynski, M. & Bohnert, H. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. KaviKishor, P.B., Hong, Z., Miao, G.-U., Hu, C.-A.H. & Verma, D.P.S. Overexpression of Δ ´-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387– 1394 (1995).

    Article  Google Scholar 

  9. Hayashi, H., Mustardy, L., Deshnium, P., Ida, M. & Murata, N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 12, 133–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., & Iba, K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601–605 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ishizaki-Nishizawa, O. et al. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol. 14, 1003–1006 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, D. et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249–257 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKersie, B.D., Bowley, S.R., Harjanto, E. & Leprince, O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111, 1177–1181 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet. 236, 331–340 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Nordin, K., Heino, P. & Palva, E.T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 16, 1061–1071 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Kurkela, S. & Borg-Franck, M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19, 689– 692 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Gilmour, S. J, Artus, N.N. & Thomashow, M.F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18, 13–21 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  18. Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol. 15, 1287 (1997).

    Google Scholar 

  19. Yamaguchi-Shinozaki, K. & Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, H., Datla, R., Georges, F., Loewen, M. & Cutler, A.J. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol. Biol. 28, 605– 617 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Q. et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Stockinger, E.J., Gilmour, S.J. & Thomashow, M.F. Arabidopsis thanliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the CrepeatlDRE, a cis-acting DNA regulatory element that stlmulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035–1040 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. & Thomashow, M.F. Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280, 104–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Mituhara, I. et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37, 49–59 ( 1996).

    Article  Google Scholar 

  25. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris, Life Sci. 316, 1194-1199 (1993).

    CAS  Google Scholar 

  26. Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35, 225–231 (1994).

    CAS  PubMed  Google Scholar 

  27. Yoshiba, Y. et al. Correlation between the induction of a gene for Δ'-pyrroline-5-carboxylate synthetase and accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7, 751– 760 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein. Biochem. Biophys. Res. Comm. 196, 1214–1220 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi-Shinozaki, K. & Shinozaki, K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration-stress in Arabidopsis thaliana. Mol. Gen. Genet. 238, 17– 25 (1993).

    CAS  PubMed  Google Scholar 

  30. Yamaguchi-Shinozaki, K. & Shinozaki, K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol. 101, 1119–1120 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dure, L. II I et al. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12, 475– 486 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Ingram J. & Bartels, D. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403 ( 1996).

    Article  CAS  Google Scholar 

  33. Lin, C. & Thomashow, M.F. DNA sequence analysis of complementary DNA for cold-regulated Arabidopsis gene corl5 and characterization of the COR15 polypeptide. Plant Physiol. 99, 519–525 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Artus, N.N. et al. 1996. Constitutive expression of the cold-regulated Aradidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA 93, 13404–13409 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, C., Iu, B. & Singh, J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 30, 679–684 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ouellet, F., Vazquez-Tello, A. & Sarhan, F. 1998. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett. 423, 324–328 ( 1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Satomi Yoshida, Atsuko Konishi, and Ekuko Ohgawara for their excellent technical assistance. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences, which awarded a grant to K.Y.-S. This work was also supported in part by the Special Coordination Fund of the Science and Technology Agency, by the Hunan Frontier Science Program, and by a grant in aid from Japan's Ministry of Education, Science, and Culture to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuko Yamaguchi-Shinozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasuga, M., Liu, Q., Miura, S. et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17, 287–291 (1999). https://doi.org/10.1038/7036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing