Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Containment of herbicide resistance through genetic engineering of the chloroplast genome

Abstract

Glyphosate is a potent herbicide. It works by competitive inhibition of the enzyme 5-enol-pyruvyl shikimate-3-phosphate synthase (EPSPS), which catalyzes an essential step in the aromatic amino acid biosynthetic pathway. We report the genetic engineering of herbicide resistance by stable integration of the petunia EPSPS gene into the tobacco chloroplast genome using the tobacco or universal vector. Southern blot analysis confirms stable integration of the EPSPS gene into all of the chloroplast genomes (5000–10,000 copies per cell) of transgenic plants. Seeds obtained after the first self-cross of transgenic plants germinated and grew normally in the presence of the selectable marker, whereas the control seedlings were bleached. While control plants were extremely sensitive to glyphosate, transgenic plants survived sprays of high concentrations of glyphosate. Chloroplast transformation provides containment of foreign genes because plastid transgenes are not transmitted by pollen. The escape of foreign genes via pollen is a serious environmental concern in nuclear transgenic plants because of the high rates of gene flow from crops to wild weedy relatives.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Shah, D.M., Horoh, R.B.,, Klee, H.J., Kishore, G.M., Winter, J.A., E.Tumer, N. et al. 1986. Engineering herbicides tolerance in transgenic plants. Science 233: 478–481.

    Article  CAS  Google Scholar 

  2. Cioppa, G.D., Baner, S.C.,, Tayler, M.L., Roshester, D.E., Klein, B.K., Shah, D.M. et al. 1987. Targeting a herbicide resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Technology 5: 579–584.

    Google Scholar 

  3. Llewellyn, D. and Fitt, G. 1996. Pollen dispersal from two field trials of trans-genic cotton in the Namoi valley, Australia. Molecular Breeding 2: 157–166.

    Article  Google Scholar 

  4. Umbeck, P.F., Barton, K.A.,, Nordheim, E.V., McCarty, J.C., Parrot, W.L., and Jenkins, J.N. 1991. Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J. Econ. Entomol. 84: 1943–1950.

    Article  Google Scholar 

  5. King, J. 1996. Could transgenic supercrops one day breed superweeds? Science 274: 180–181.

    Article  Google Scholar 

  6. Mikkelsen, T.R., Anderson, B., and, Jörgensen, R.B. 1996. The risk of crop transgene spread. Nature 380: 31.

    Article  CAS  Google Scholar 

  7. Daniell, H. and Rebeiz, C.A. 1982. Chloroplast culture IX: chlorphyll(ide) A biosynthesis in vitro at rates higher than in vivo. Biochem. Biophys. Res. ComMun. 106: 466–471.

    Article  CAS  Google Scholar 

  8. Daniell, H., Ramanujan, P.,, Krishnan, M., Gnanam, A., and Rebeiz, C.A. 1983. In vitro synthesis of photosynthetic membranes: I. Development of photosystem I activity and cyclic phosphorylation. Biochem. Biophys. Res. ComMun. 111: 740–749.

    Article  CAS  Google Scholar 

  9. Daniell, H., Krishnan, M.,, Umabai, U., and Gnanam, A. 1986. An efficient and prolonged in vitro translational system from cucumber etioplasts. Biochem. Biophys. Res. ComMun. 135: 248–255.

    Article  CAS  Google Scholar 

  10. Daniell, H. and McFadden, B.A. 1987. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc. Natl. Acad. Sci. USA 84: 6349–6353.

    Article  CAS  Google Scholar 

  11. Carlson, P.S. 1973. The use of protoplasts for genetic research. Proc. Natl. Acad. Sci. USA 70: 598–602.

    Article  CAS  Google Scholar 

  12. Daniell, H. 1993. Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods Enzymol. 217: 536–556.

    Article  CAS  Google Scholar 

  13. Daniell, H., Vivekananda, J.,, Nielsen, B.L., Ye, G.N., Tewari, K.K., and Sanford, J.C. 1990. Transient foreign gene expression in chloroplast of cultured tobacco cells following biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA 87: 88–92.

    Article  CAS  Google Scholar 

  14. Ye, G.N., Daniell, H., and, Sanford, J.C. 1990. Optimization of delivery of foreign DNA into higher plant chloroplasts. Plant Mol. Biol. 15: 809–819.

    Article  CAS  Google Scholar 

  15. Daniell, H., Krishnan, M., and, McFadden, B.A. 1991. Expression of β-glucuronidase gene in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Reports 9: 615–619.

    Article  CAS  Google Scholar 

  16. Svab, Z. and Maliga, P. 1993. High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917.

    Article  CAS  Google Scholar 

  17. McBride, K.E., Svab, Z.,, Schaaf, D.J., Hogen, P.S., Stalker, D.M., and Maliga, P. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13: 362–365.

    CAS  Google Scholar 

  18. Maier, R.M., Neckermann, K.,, Igloi, G.L., and Kössel, H. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251: 614–628.

    Article  CAS  Google Scholar 

  19. Brixey, P.J., Guda, C. and Daniell, H. 1997. The chloroplast psbA promoter is more efficient in E. coli than the T7 promoter for hyper expression of a foreign protein. Biotechnology Letters 19: 395–399.

    Article  CAS  Google Scholar 

  20. Svab, Z., Hajdukiewicz, P. and Maliga, P. 1990. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526–8530.

    Article  CAS  Google Scholar 

  21. Della-Cioppa, G., Bauer, S.C., Klein, B.K., Shaw, D.M., Fraley, R.T., and Kishore, G.M. 1986. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. USA 83: 6873–6877.

    Article  CAS  Google Scholar 

  22. Rogers, S.G., Brand, L.A., Holder, S.B., Sharps, E.S., and Brackin, M.J. 1983. Amplification of the aro A gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46: 37–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Daniell, H. 1997. Transformation and foreign gene expression in plants mediated by microprojectile bombardment. Methods Mol. Biol. 62: 463–489.

    CAS  PubMed  Google Scholar 

  24. Edwards, K., Johnstone, C., and Thompson, C. 1991. A simple and rapid method for preparation of plant genomic DNA for PCR analysis. Nucl. Acids. Res. 19: 1349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Daniell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniell, H., Datta, R., Varma, S. et al. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16, 345–348 (1998). https://doi.org/10.1038/nbt0498-345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0498-345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing