Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Malaria Epitopes Expressed on the surface of Recombinant Tobacco Mosaic Virus

Abstract

Using malaria as a model disease, we engineered the surface of tobacco mosaic tobamovinis (TMV) for presentation of selected epitopes to the mammalian immune system. The TMV coat protein is a well-characterized and abundant self-assembling polymer previously shown to be a highly immunogenic carrier. Selected B-cell epitopes were either inserted into the surface loop region of the TMV coat protein or fused to the C terminus using the leaky stop signal derived from the replicase protein reading frame. Tobacco plants systemically infected with each of these constructs contained high titers of genetically stable recombinant virus, enabling purification of the chimeric particles in high yield. Symptoms induced in tobacco ranged from a normal mosaic pattern similar to that induced by the parental U1 strain to a unique bright yellow mosaic. As measured by quantitative ELISA against synthetic peptide standards, wild type TMV coat protein and fusion protein synthesized by the leaky stop mechanism coassembled into virus particles at the predicted ratio of 20:1. Recombinant plant viruses have the potential to meet the need for scalable and cost effective production of subunit vaccines that can be easily stored and administered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnon, R. and Van Regenmortel, M.H.V. 1992. Structural basis of antigenic specificity and design of new vaccines. FASEB J. 6: 3265–3274.

    Article  CAS  Google Scholar 

  2. Oaks, S.C. Jr., Mitchell, V.S., Pearson, G.W., Carpenter, C.C.J. (Eds.). 1991. Vaccines, p. 169–210. In: Malaria-Obstacles and Opportunities. National Academy Press, Washington, D.C.

    Google Scholar 

  3. Haynes, J.R., Cunningham, J., Von Seefried, A., Lennick, M., Garvin, R.T. and Shen, S.-H. 1986. Development of genetically-engineered, candidate polio vaccine employing the self-assembling properties of the tobacco mosaic virus coat protein. Bio/Technology 4: 637–641.

    CAS  Google Scholar 

  4. Usha, R., Rohll, J.B., Spall, V.E., Shanks, M., Maule, A.J., Johnson, J.E. and Lomonossoff, G.P. 1993. Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197: 366–374.

    Article  CAS  Google Scholar 

  5. Dawson, W.O. 1992. Tobamovirus-plant interactions. Virology 186: 359–367.

    Article  CAS  Google Scholar 

  6. Kumagai, M.H., Turpen, T.H., Weinzettl, N., della-Cioppa, G., Turpen, A.M., Donson, J., Hilf, M.E., Grantham, G.L., Dawson, W.O., Chow, T.P., Piatak, M. Jr. and Grill, L.K. 1993. Rapid, high-level expression of biologically active α-trichosanthin in transfected plants by an RNA viral vector. Proc. Natl. Acad. Sci. USA 90: 427–430.

    Article  CAS  Google Scholar 

  7. Namba, K., Pattanayek, R. and Stubbs, G. 1989. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction. J. Mol. Biol. 208: 307–325.

    Article  CAS  Google Scholar 

  8. Culver, J.N., Lindbeck, A.G.C. and Dawson, W.O. 1991. Virus-host interactions: Induction of chlorotic and necrotic responses in plants by tobamoviruses. Annu. Rev. Phytopathology 29: 193–217.

    Article  Google Scholar 

  9. Takamatsu, N., Watanabe, Y., Yanagi, H., Meshi, T., Shiba, T. and Okada, Y. 1990. Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector. FEBS Lett. 269: 73–76.

    Article  CAS  Google Scholar 

  10. Pelham, H.R.B. 1978. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272: 469–471.

    Article  CAS  Google Scholar 

  11. Skuzeski, J.M., Nichols, L.M., Gesteland, R.F. and Atkins, J.F. 1991. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J. Mol. Biol. 218: 365–373.

    Article  CAS  Google Scholar 

  12. Zerfass, K. and Beier, H. 1992. Pseudouridine in the anticodon GψA of plant cytoplasmic tRNATyr is required for UAG and UAA suppression in the TMV-specific context. Nuc. Ac. Res. 20: 5911–5918.

    Article  CAS  Google Scholar 

  13. Hamamoto, H., Sugiyama, Y., Nakagawa, N., Hashida, E., Matsunaga, Y., Takemoto, S., Watanabe, Y. and Okada, Y. 1993. A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Bio/Technology 11: 930–932.

    CAS  PubMed  Google Scholar 

  14. Charoenvit, Y., Mellouk, S., Cole, C., Bechara, R., Leef, M.F., Sedegah, M., Yuan, L.F., Robey, F.A., Beaudoin, R.L. and Hoffman, S.L. 1991. Monoclonal, but not polyclonal, antibodies protect against Plasmodium yoelii sporozoites. J. Immunol. 146: 1020–1025.

    CAS  PubMed  Google Scholar 

  15. Charoenvit, Y., Collins, W.E., Jones, T.R., Millet, P., Yuan, L., Campbell, G.H., Beaudoin, R.L., Broderson, J.R. and Hoffman, S.L. 1991. Inability of malaria vaccine to induce antibodies to a protective epitope within its sequence. Science 251: 668–671.

    Article  CAS  Google Scholar 

  16. Gooding, G.V. Jr. and Hebert, T.T. 1967. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 57: 1285.

    PubMed  Google Scholar 

  17. Rappaport, I. 1965. The antigenic structure of tobacco mosaic virus. Adv. Virus Res. 11: 223–275.

    Article  CAS  Google Scholar 

  18. Valenzuela, P., Coit, D., Medina-Selby, M.A., Kuo, C.H., Van Nest, G., Burke, R.L., Bull, P., Urdea, M.C. and Graves, P.V. 1985. Antigen engineering in yeast: Synthesis and assembly of hybrid hepatitis B surface antigen-herpes simplex 1 gD particles. Bio/Technology 3: 323–326.

    CAS  Google Scholar 

  19. Westhof, E., Altschuh, D., Moras,D., Bloomer, A.C., Mondragon, A., Klug, A. and Van Regenmortel, M.H.V. 1984. Correlation between segmemal mobility and the location of antigenic determinants in proteins. Nature 311: 123–126.

    Article  CAS  Google Scholar 

  20. Namba, K. and Stubbs, G. 1986. Structure of tobacco mosaic virus at 3.6 Å resolution: Implications for assembly. Science 231: 1401–1406.

    Article  CAS  Google Scholar 

  21. Van Regenmortel, M.H.V. 1986. Tobacco mosaic virus. Antigenic structure, p. 79–104. In: The Plant Viruses. The Rod-Shaped Plant Viruses (Van Regenmortel, M. H. V., Fraenkel-Conrat, H. (Eds.). Plenum Press, New York.

    Google Scholar 

  22. Dawson, W.O. 1991. The pathogenicity of tobacco mosaic virus. Sem. Virol. 2: 131–137.

    CAS  Google Scholar 

  23. Lindbeck, A.G.C., Lewandowski, D.J., Culver, J.N., Thomson, W.W. and Dawson, W.0. 1992. Mutant coat protein of tobacco mosaic virus induces acute chlorosis in expanded and developing tobacco leaves. Mol. Plant-Microbe Interact. 5: 235–241.

    Article  CAS  Google Scholar 

  24. Kearaey, C.M., Donson, J., Jones, G.E. and Dawson, W.O. 1993 Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology 192: 11–17.

    Article  Google Scholar 

  25. Mason, H.S., Lam, D.M.-K. and Arntzen, C.J. 1992. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 89: 11745–11749.

    Article  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  27. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

  28. Goelet, P., Lomonossoff, G.P., Butler, P.J.G., Akam, M.E., Gait, M.J. and Kara, J. 1982. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad Sci. USA 79: 5818–5822.

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24: 946–950.

    Article  Google Scholar 

  30. Saiki, R.K., Scharf, S., Faloona, F.A., Mullis, K.B., Horn, G.T., Erlich, H.A. and Arnheim, N. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.

    Article  CAS  Google Scholar 

  31. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  Google Scholar 

  32. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  33. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Turpen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turpen, T., Reinl, S., Charoenvit, Y. et al. Malaria Epitopes Expressed on the surface of Recombinant Tobacco Mosaic Virus. Nat Biotechnol 13, 53–57 (1995). https://doi.org/10.1038/nbt0195-53

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0195-53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing