Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transgene Inactivation: Plants Fight Back!

Abstract

Desirable new phenotypes created by the introduction of foreign DNA into plants are frequently unstable following propagation, leading to a loss of the newly acquired traits. This genetic instability is due not to deletion or mutation of the introduced DNA but rather to the inactivation of the transgene. In this review, we discuss the mechanisms that might be responsible for transgene inactivation and examine means of stabilizing gene expression in transgenic plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stockhaus, J., Eckes, P., Blau, A., Schell, J. and Willmitzer, L. 1987. Organ-specific and dosage-dependent expression of a leaf/stem specific gene from potato after tagging and transfer into potato and tobacco plants. Nucl. Acids Res. 15: 3479–3491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hobbs, S.L.A., Kpodar, P. and Delong, C.M.O. 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15: 851–864.

    Article  CAS  PubMed  Google Scholar 

  3. Jones, J.D., Dunsmuir, P. and Bedbrook, J. 1985. High level expression of introduced chaemeric genes in regenerated transformed plants. EMBO J. 4: 2411–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eckes, P., Schell, J. and Willmitzer, L. 1985. Organ-specific expression of three leaf/stem specific cDNAs from potato is regulated by light and correlated with chloroplast development. Molec. Gen. Genet. 199: 216–221.

    Article  CAS  Google Scholar 

  5. Nagy, F., Morelli, G., Fraley, R.T., Rogers, S.G. and Chua, N.-H. 1985. Photoregulated expression of a pea rbcS gene in leaves of transgenic plants. EMBO J. 4: 3063–3068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pröls, F. and Meyer, P. 1992. The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J. 2: 465–475.

    PubMed  Google Scholar 

  7. Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenhof, I. and Saedler, H. 1992. Endogenous and environmental factors influence 35S promoter methylation of a maize AI gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231: 345–352.

    Article  CAS  PubMed  Google Scholar 

  8. Ottaviani, M.-P., Smits, T. and Häenisch ten Cate, C.H. 1993. Differential methylation and expression of the β-glucuronidase and neomycin phosphotransferase genes in transgenic potato cv Bintje. Plant Sci. 88: 73–81.

    Article  CAS  Google Scholar 

  9. Register, J.C., Peterson, D.J., Bell, P.J., Bullock, W.P., Evans, I.J., Frame, B., Greenland, A.J., Higgs, N.S., Jepson, I., Jiao, S., Lewnau, C.J., Sillick, J.M. and Wilson, H.M. 1994. Structure and function of selectable and nonselectable transgenes in maize following introduction by particle bombardment. Plant Mol. Biol. In press.

  10. Deroles, S.C. and Gardner, R.C. 1988a. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molec. Biol. 11: 355–364.

    Article  CAS  Google Scholar 

  11. Deroles, S.C. and Gardner, R.C. 1988b. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molec. Biol. 11: 365–377.

    Article  CAS  Google Scholar 

  12. Scheid, O.M., Paszkowski, J. and Potrykus, I. 1991. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol. Gen. Genet. 228: 104–112.

    Article  Google Scholar 

  13. Matzke, M.A., Primig, M., Trnovsky, J. and Matzke, A.J.M. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8: 643–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Battraw, M. and Hall, T.C. 1992. Expression of a chimeric neomycin phospho-transferase II gene in first and second generation transgenic rice plants. Plant Sci. 86: 191–202.

    Article  CAS  Google Scholar 

  15. Gelvin, S.B., Karcher, S.J. and DiRita, V.J. 1983. Methylation of the T-DNA in Agrobacterium tumefaciens and in several crown gall tumors. Nucl. Acids Res. 11: 159–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hepburn, A.G., Clarke, L.E., Pearson, L. and White, J. 1983. The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. J. Mol. Appl. Genet. 2: 315–329.

    CAS  PubMed  Google Scholar 

  17. Amasino, R.M., Powell, A.L.T. and Gordon, M.P. 1984. Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol. Gen. Genet. 197: 437–446.

    Article  CAS  PubMed  Google Scholar 

  18. Peerbolte, R., Leenhouts, K., Hooykaas-van Slogteren, G.M.S., Wullems, G.J. and Schilperoort, R.A. 1986. Clones from a shooty tobacco crown gall tumor II: irregular T-DNA structures and organization, T-DNA methylation and conditional expression of opine genes. Plant Mol. Biol. 7: 285–299.

    Article  CAS  PubMed  Google Scholar 

  19. John, M.C. and Amasino, R.M. 1989. Extensive changes in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacteriun-tumefaciens-transformed plant cells. Mol. Cell. Biol. 9: 4298–4303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klaas, M., John, M.J., Crowell, D.N. and Amasino, R.M. 1989. Rapid induction of genomic demethylation and T-DNA gene expression in plant cells by 5-azacytidine derivatives. Plant Mol. Biol. 12: 413–423.

    Article  CAS  PubMed  Google Scholar 

  21. Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. 1987. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678.

    Article  CAS  PubMed  Google Scholar 

  22. Linn, F., Heidmann, I., Saedler, H. and Meyer, P. 1990. Epigenetic changes in the expression of the maize Al gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. Gen. Genet. 222: 329–336.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer, P. and Heidmann, I. 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243: 390–399.

    CAS  PubMed  Google Scholar 

  24. Walter, C., Broer, I., Hillemann, D. and Phler, A. 1992. High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol. Gen. Genet. 235: 189–196.

    Article  CAS  PubMed  Google Scholar 

  25. Matzke, M.A. and Matzke, A.J.M. 1990. Gene interactions and epigenetic variation in transgenic plants. Devel. Genet. 11: 214–223.

    Article  CAS  Google Scholar 

  26. Matzke, M.A. and Matzke, A.J.M. 1991. Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol. Biol. 16: 821–830.

    Article  CAS  PubMed  Google Scholar 

  27. Matzke, M.A., Neuhuber, F. and Matzke, A.J.M. 1993. A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Mol. Gen. Genet. 236: 379–389.

    Article  CAS  PubMed  Google Scholar 

  28. Vaucheret, H. 1993. Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant: 90bp of homology in the promoter sequence are sufficient for trans-inactivation. C. R. Acad. Sci. Paris, Science de la vie/Life Sciences 316: 1471–1483.

    CAS  Google Scholar 

  29. Meyer, P., Heidmann, I. and Niedenhof, I. 1993. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4: 89–100.

    Article  CAS  PubMed  Google Scholar 

  30. McElroy, D. and Brettell, R.I.S. 1994. Foreign gene expression in transgenic cereals. TIBTECH 12: 62–68.

    Article  CAS  Google Scholar 

  31. Schuh, W., Nelson, M.R., Bigelow, D.M., Orum, T., v Orth, C.E., Lynch, P.T., Eyles, P.S., Blackball, N.W., Jones, J., Cocking, E.C. and Davey, M.R. 1993. The phenotype characterisation of R2 generation transgenic rice plants under field conditions. Plant Sci. 89: 69–79.

    Article  CAS  Google Scholar 

  32. Assaad, F.F., Tucker, K.L. and Signer, E.R. 1993. Epigenetic repeat-induced silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22: 1067–1085.

    Article  CAS  PubMed  Google Scholar 

  33. Selker, E.U. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Ann. Rev. Genet. 24: 579–613.

    Article  CAS  PubMed  Google Scholar 

  34. Rhounim, L., Rossignol, J.L. and Faugeron, G. 1992. Epimutation of repeated genes in Ascobolus immersus. EMBO J. 11: 4451–4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Renckens, S., de Greve, H., van Montague, M. and Hernalsteens, J.-P. 1992. Petunia plants escape from negative selection against a transgene by silencing foreign DNA via methylation. Mol. Gen. Genet. 233: 53–64.

    Article  CAS  PubMed  Google Scholar 

  36. Hobbs, S.L.A., Warkentin, T.D. and DeLong, C.M.O. 1993. Transgene copy number can be postively or negatively associated with transgene expression. Plant Mol. Biol. 21: 17–26.

    Article  CAS  PubMed  Google Scholar 

  37. Brink, R.A. 1973. Paramutation. Ann. Rev. Genet. 7: 129–152.

    Article  CAS  PubMed  Google Scholar 

  38. Harrison, B.J. and Carpenter, R. 1973. A comparison of the instabilities at the Nivea and Pallida loci in Antirrhinum majus. Heredity 31: 309–323.

    Article  Google Scholar 

  39. Patterson, G.I., Thorpe, C.J. and Chandler, V.L. 1993. Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135: 881–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Paro, R. 1990. Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6: 416–421.

    Article  CAS  PubMed  Google Scholar 

  41. Paro, R. 1993. Mechanisms of heritable gene repression during development of Drosophila. Curr. Opin. Cell Biol. 5: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  42. Laurenson, P. and Rine, J. 1992. Silencers, silencing and heritable transcriptional states. Microbiol. Rev. 56: 543–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mol, J.N.M., Stuitje, A.R. and van der Krol, A. 1989. Genetic manipulation of floral pigmentation genes. Plant Mol. Biol. 13: 287–294.

    Article  CAS  PubMed  Google Scholar 

  44. Napoli, C., Lemieux, C. and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. 1990. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mol, J., van Blokland, R. and Kooter, J. 1991. More about co-suppression. TIBTECH 9: 182–183.

    Article  Google Scholar 

  47. Kooter, J.M. and Mol, J.N.M. 1993. Trans-inactivation of gene expression in plants. Curr. Opin. Biotechnol. 4: 166–171.

    Article  CAS  Google Scholar 

  48. Flavell, R.B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. USA 91: 3490–3496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, C.J.S., Watson, C.F., Bird, C.R., Ray, J., Schuch, W. and Grierson, D. 1990. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224: 477–481.

    Article  CAS  PubMed  Google Scholar 

  50. Neuhaus, J.-M., Ahl-Goy, P., Hinz, U., Flores, S. and Meins, F.J. 1991. High level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol. Biol. 16: 141–15.

    Article  CAS  PubMed  Google Scholar 

  51. de Carvalho, F., Gheysen, G., Kushnir, S., van Montagu, M., Inzé, D. and Castresana, C. 1992. Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11: 2595–2602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hart, C.M., Fischer, B., Neuhaus, J.-M. and Meins, F.J. 1992. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol. Gen. Genet. 235: 179–188.

    Article  CAS  PubMed  Google Scholar 

  53. Seymour, G.B., Fray, R.G., Hill, P. and Tucker, G.A. 1993. Down-regulation of two non-homologous endogenous tomato genes with a single chimaeric sense gene construct. Plant Mol. Biol. 23: 1–9.

    Article  CAS  PubMed  Google Scholar 

  54. Fray, R.G. and Grierson, D. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22: 589–602.

    Article  CAS  PubMed  Google Scholar 

  55. Goring, D.R., Thomson, L. and Rothstein, S.J. 1991. Transformation of a partial nopaline synthase gene into tobacco suppresses the expression of a resident wild-type gene. Proc. Natl. Acad. Sci. USA 88: 1770–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lagrimini, L.M., Bedford, S. and Rothstein, S. 1990. Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2: 7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bollmann, J., Carpenter, R. and Coen, E.S. 1991. Allelic interactions at the nivea locus of Antirrhinum. Plant Cell 3: 1327–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M. and Dougherty, W.G. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dehio, C. and Schell, J. 1994. Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc. Natl. Acad. Sci. USA 91: 5538–5542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salinas, J., Matassi, G., Montero, L.M. and Bernadi, G. 1988. Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucl. Acids Res. 16: 4269–4285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matassi, G., Montero, L.M., Salinas, J. and Bernadi, G. 1989. The isochore organization and the compositional distribution of homologous coding sequences in the nuclear genome of plants. Nuci. Acids Res. 17: 5273–5290.

    Article  CAS  Google Scholar 

  62. Wassenegger, M., Heimes, S., Riedel, L. and Sanger, H. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576.

    Article  CAS  PubMed  Google Scholar 

  63. Jorgensen, R. 1992. Silencing of plant genes by homologous transgenes. AgBiotech. News Inform. 4: 265N–273.

    Google Scholar 

  64. Stief, A., Winter, D.M., Strätling, W.H. and Sippel, A.E. 1989. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341: 343–345.

    Article  CAS  PubMed  Google Scholar 

  65. Breyne, P., van Montagu, M., Depicker, A. and Gheysen, G. 1992. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 4: 463–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Allen, G.C., Hall, G.E.J., Childs, L.C., Weissinger, A.K., Spiker, S. and Thompson, W.F. 1993. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 603–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mlyn v, L., Loonen, A., Heldens, J., Jansen, R.C., Keizer, P., Stiekema, W.J. and Nap, J.-P. 1994. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6: 417–42.

    Article  Google Scholar 

  68. Laemmli, U.K., Kas, E., Poljak, L. and Adachi, Y. 1992. Scaffold associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Gen. Devel. 2: 275–285.

    Article  CAS  Google Scholar 

  69. Lichtenstein, M., Keini, G., Cedar, H. and Bergman, Y. 1994. B cell-specific demethylation: a novel role for the intronic k chain enhancer sequence. Cell 76: 913–923.

    Article  CAS  PubMed  Google Scholar 

  70. Yoder, J.I. and Goldsbrough, A.P. 1994. Transformation systems for generating marker-free transgenic plants. Bio/Technol. 12: 263–267.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Finnegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finnegan, J., McElroy, D. Transgene Inactivation: Plants Fight Back!. Nat Biotechnol 12, 883–888 (1994). https://doi.org/10.1038/nbt0994-883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0994-883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing