Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular magnetic hysteresis at 60 kelvin in dysprosocenium

Abstract

Lanthanides have been investigated extensively for potential applications in quantum information processing and high-density data storage at the molecular and atomic scale. Experimental achievements include reading and manipulating single nuclear spins1,2, exploiting atomic clock transitions for robust qubits3 and, most recently, magnetic data storage in single atoms4,5. Single-molecule magnets exhibit magnetic hysteresis of molecular origin6—a magnetic memory effect and a prerequisite of data storage—and so far lanthanide examples have exhibited this phenomenon at the highest temperatures. However, in the nearly 25 years since the discovery of single-molecule magnets7, hysteresis temperatures have increased from 4 kelvin to only about 14 kelvin8,9,10 using a consistent magnetic field sweep rate of about 20 oersted per second, although higher temperatures have been achieved by using very fast sweep rates11,12 (for example, 30 kelvin with 200 oersted per second)12. Here we report a hexa-tert-butyldysprosocenium complex—[Dy(Cpttt)2][B(C6F5)4], with Cpttt = {C5H2tBu3-1,2,4} and tBu = C(CH3)3—which exhibits magnetic hysteresis at temperatures of up to 60 kelvin at a sweep rate of 22 oersted per second. We observe a clear change in the relaxation dynamics at this temperature, which persists in magnetically diluted samples, suggesting that the origin of the hysteresis is the localized metal–ligand vibrational modes that are unique to dysprosocenium. Ab initio calculations of spin dynamics demonstrate that magnetic relaxation at high temperatures is due to local molecular vibrations. These results indicate that, with judicious molecular design, magnetic data storage in single molecules at temperatures above liquid nitrogen should be possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structure of [Dy(Cpttt)2][B(C6F5)4] (1).
Figure 2: Magnetic hysteresis of 1.
Figure 3: Relaxation dynamics of 1.
Figure 4: Ab initio spin dynamics.

Similar content being viewed by others

References

  1. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012)

    Article  CAS  ADS  Google Scholar 

  2. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014)

    Article  CAS  ADS  Google Scholar 

  3. Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016)

    Article  CAS  ADS  Google Scholar 

  4. Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016)

    Article  CAS  ADS  Google Scholar 

  5. Natterer, F. D. et al. Reading and writing single-atom magnets. Nature 543, 226–228 (2017)

    Article  CAS  ADS  Google Scholar 

  6. Gatteschi, D ., Sessoli, R . & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006)

  7. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal–ion cluster. Nature 365, 141–143 (1993)

    Article  CAS  ADS  Google Scholar 

  8. Rinehart, J. D., Fang, M., Evans, W. J. & Long, J. R. A N23– radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 133, 14236–14239 (2011)

    Article  CAS  Google Scholar 

  9. Liu, J. et al. A stable pentagonal bipyramidal Dy(III) single-ion magnet with a record magnetization reversal barrier over 1000 K. J. Am. Chem. Soc. 138, 5441–5450 (2016)

    Article  CAS  Google Scholar 

  10. Ding, Y.-S., Chilton, N. F., Winpenny, R. E. P. & Zheng, Y.-Z. On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew. Chem. Int. Ed. 55, 16071–16074 (2016)

    Article  CAS  Google Scholar 

  11. Chen, Y.-C. et al. Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) single-ion magnets. J. Am. Chem. Soc. 138, 2829–2837 (2016)

    Article  CAS  Google Scholar 

  12. Gupta, S. K., Rajeshkumar, T., Rajaraman, G. & Murugavel, R. An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 7, 5181–5191 (2016)

    Article  CAS  Google Scholar 

  13. Evans, W. J., Perotti, J. M., Brady, J. C. & Ziller, J. W. Tethered olefin studies of alkene versus tetraphenylborate coordination and lanthanide olefin interactions in metallocenes. J. Am. Chem. Soc. 125, 5204–5212 (2003)

    Article  CAS  Google Scholar 

  14. Berkefeld, A. et al. Carbon monoxide activation via O-bound CO using decamethylscandocinium–hydridoborate ion pairs. J. Am. Chem. Soc. 134, 10843–10851 (2012)

    Article  CAS  Google Scholar 

  15. Kaita, S. et al. Ultimately specific 1,4-cis polymerization of 1,3-butadiene with a novel gadolinium catalyst. Macromol. Rapid Commun. 24, 179–184 (2003)

    Article  CAS  Google Scholar 

  16. Demir, S., Zadrozny, J. M., Nippe, M. & Long, J. R. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J. Am. Chem. Soc. 134, 18546–18549 (2012)

    Article  CAS  Google Scholar 

  17. Demir, S., Zadrozny, J. M. & Long, J. R. Large spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2Ln(BPh4)] (Cp*=pentamethylcyclopentadienyl; Ln = Tb, Dy). Chem. Eur. J. 20, 9524–9529 (2014)

    Article  CAS  Google Scholar 

  18. Meng, Y.-S., Zhang, Y.-Q., Wang, Z.-M., Wang, B.-W. & Gao, S. Weak ligand-field effect from ancillary ligands on enhancing single-ion magnet performance. Chem. Eur. J. 22, 12724–12731 (2016)

    Article  CAS  Google Scholar 

  19. Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078–2085 (2011)

    Article  CAS  Google Scholar 

  20. Chilton, N. F., Collison, D., McInnes, E. J. L., Winpenny, R. E. P. & Soncini, A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 4, 2551 (2013)

    Article  ADS  Google Scholar 

  21. Jiang, S.-D., Wang, B.-W., Sun, H.-L., Wang, Z.-M. & Gao, S. An organometallic single-ion magnet. J. Am. Chem. Soc. 133, 4730–4733 (2011)

    Article  CAS  Google Scholar 

  22. Jiang, S.-D. et al. Series of lanthanide organometallic single-ion magnets. Inorg. Chem. 51, 3079–3087 (2012)

    Article  CAS  Google Scholar 

  23. Jeletic, M. et al. An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism. J. Am. Chem. Soc. 133, 19286–19289 (2011)

    Article  CAS  Google Scholar 

  24. Zhang, P. et al. Equatorially coordinated lanthanide single ion magnets. J. Am. Chem. Soc. 136, 4484–4487 (2014)

    Article  CAS  Google Scholar 

  25. Stoyanov, E. S., Stoyanova, I. V. & Reed, C. A. The basicity of unsaturated hydrocarbons as probed by hydrogen-bond-acceptor ability: bifurcated N–H+···π hydrogen bonding. Chem. Eur. J. 14, 7880–7891 (2008)

    Article  CAS  Google Scholar 

  26. Guo, F.-S. et al. A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. http://dx.doi.org/10.1002/anie.201705426 (2017)

  27. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions Ch. 10 (Oxford Univ. Press, 1970)

  28. Lunghi, A., Totti, F., Sessoli, R. & Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 8, 14620 (2017)

    Article  ADS  Google Scholar 

  29. Escalera-Moreno, L., Suaud, N., Gaita-Ariño, A. & Coronado, E. Determining key local vibrations in the relaxation of molecular spin qubits and single-molecule magnets. J. Phys. Chem. Lett. 8, 1695–1700 (2017)

    Article  CAS  Google Scholar 

  30. Shrivastava, K. N. Theory of spin–lattice relaxation. Phys. Status Solidi B 117, 437–458 (1983)

    Article  CAS  ADS  Google Scholar 

  31. Gregson, M. et al. A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour. Chem. Sci. 7, 155–165 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Engineering and Physical Sciences Research Council (studentship to C.A.P.G. and EP/P002560/1 for F.O. and D.R.), the Ramsay Memorial Fellowships Trust (fellowship to N.F.C.) and the University of Manchester. We thank the University of Manchester for access to the SQUID magnetometer and Computational Shared Facility and R. E. P. Winpenny, E. J. L. McInnes and D. Collison for comments.

Author information

Authors and Affiliations

Authors

Contributions

C.A.P.G. and D.P.M. provided the original concept. C.A.P.G. synthesized and characterized the compounds. F.O. carried out the single-crystal X-ray diffraction analysis and supporting synthetic/characterization work. N.F.C. collected and interpreted magnetic data. N.F.C. devised the relaxation dynamics model and wrote computer programs to perform these calculations. D.R. and N.F.C. performed the calculations. D.P.M. and N.F.C. wrote the manuscript with contributions from all authors. D.P.M. and N.F.C. supervised the project.

Corresponding authors

Correspondence to Nicholas F. Chilton or David P. Mills.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. Sessoli, P. Zhang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Discussion, Data and Equations, Supplementary Tables 1-21, Supplementary Figures 1-64. It includes details of synthesis methods, crystallography, NMR, UV-Vis-NIR, vibrational spectra, magnetic data, theoretical analysis and additional references. This file was replaced on 4 September 2017 to correct a file corruption in the equations. (PDF 26419 kb)

Supplementary Data

Crystallographic Information File for 1 and 5-7. (CIF 4576 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodwin, C., Ortu, F., Reta, D. et al. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548, 439–442 (2017). https://doi.org/10.1038/nature23447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23447

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing