Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical and structural effects of base modifications in messenger RNA

Abstract

A growing number of nucleobase modifications in messenger RNA have been revealed through advances in detection and RNA sequencing. Although some of the biochemical pathways that involve modified bases have been identified, research into the world of RNA modification — the epitranscriptome — is still in an early phase. A variety of chemical tools are being used to characterize base modifications, and the structural effects of known base modifications on RNA pairing, thermodynamics and folding are being determined in relation to their putative biological roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of base-modified nucleosides known to be present at internal positions in mRNA.
Figure 2: Sequencing by chemical modification for the location of modified bases.

Similar content being viewed by others

References

  1. Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Decatur, W. A. & Fournier, M. J. rRNA modifications and ribosome function. Trends Biochem. Sci. 27, 344–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Motorin, Y. & Helm, M. tRNA stabilization by modified nucleotides. Biochemistry 49, 4934–4944 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ramanathan, A., Robb, G. B. & Chan, S.-H. mRNA capping: biological functions and applications. Nucleic Acids Res. 44, 7511–7526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perry, R. P., Kelley, D. E., Friderici, K. & Rottman, F. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus. Cell 4, 387–394 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morse, D. P. & Bass, B. L. Detection of inosine in messenger RNA by inosine-specific cleavage. Biochemistry 36, 8429–8434 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lovejoy, A. F., Riordan, D. P. & Brown, P. O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9, e110799 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dubin, D. T. & Taylor, R. H. The methylation state of poly A-containing-messenger RNA from cultured hamster cells. Nucleic Acids Res. 2, 1653–1668 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sommer, S. et al. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 3, 749–765 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huber, S. M. et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem 16, 752–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delatte, B. et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016). Refs 15 and 16 present the first maps of the locations of the modification m1A in mRNA.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nature Chem. Biol. 12, 311–316 (2016).

    Article  ADS  CAS  Google Scholar 

  17. Chen, S.-H. et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238, 363–366 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X. et al. The tRNA methyltransferase NSun2 stabilizes p16INK4 mRNA by methylating the 3′-untranslated region of p16. Nature Commun. 3, 712 (2012).

    Article  ADS  CAS  Google Scholar 

  20. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015). The incorporation of m6A into a hairpin region is shown to modulate the local structure of RNA, facilitating the binding of HNRNPC.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roundtree, I. A. & He, C. RNA epigenetics — chemical messages for posttranscriptional gene regulation. Curr. Opin. Chem. Biol. 30, 46–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert, W. V., Bell, T. A. & Schaening, C. Messenger RNA modifications: form, distribution, and function. Science 352, 1408–1412 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grosjean, H., Keith, G. & Droogmans, L. Detection and quantification of modified nucleotides in RNA using thin-layer chromatography. Methods Mol. Biol. 265, 357–391 (2004).

    CAS  PubMed  Google Scholar 

  24. Paul, M. S. & Bass, B. L. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J. 17, 1120–1127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012). This article and ref. 27 were the first to report a deep-sequencing-based transcriptome-wide analysis of an mRNA base modification (m6A).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Cattenoz, P. B., Taft, R. J., Westhof, E. & Mattick, J. S. Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA 19, 257–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khoddami, V. & Cairns, B. R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nature Biotechnol. 31, 458–464 (2013).

    Article  CAS  Google Scholar 

  30. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nature Chem. Biol. 11, 592–597 (2015). A combination of mass spectrometry, enrichment and sequencing by chemical modification are used to improve our understanding of the abundance and localization of pseudouridine in mRNA.

    Article  CAS  Google Scholar 

  31. Ho, N. W. & Gilham, P. T. Reaction of pseudouridine and inosine with N-cyclohexyl-N'-β-(4-methylmorpholinium)ethylcarbodiimide. Biochemistry 10, 3651–3657 (1971).

    Article  CAS  PubMed  Google Scholar 

  32. Sakurai, M. et al. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res. 24, 522–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakurai, M., Yano, T., Kawabata, H., Ueda, H. & Suzuki, T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nature Chem. Biol. 6, 733–740 (2010).

    Article  CAS  Google Scholar 

  34. Harcourt, E. M., Ehrenschwender, T., Batista, P. J., Chang, H. Y. & Kool, E. T. Identification of a selective polymerase enables detection of N6-methyladenosine in RNA. J. Am. Chem. Soc. 135, 19079–19082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, K. et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. 54, 1587–1590 (2015).

    Article  CAS  Google Scholar 

  36. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nature Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hauenschild, R. et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res. 43, 9950–9964 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 37, e12 (2009). The background of bisulfite sequencing and the changes that are necessary to apply this procedure to RNA are described; both conventional and deep sequencing are then used to detect m5C sites in tRNA and rRNA.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida, M. & Ukita, T. Modification of nucleosides and nucleotides: VII. Selective cyanoethylation of inosine and pseudouridine in yeast transfer ribonucleic acid. Biochim. Biophys. Acta 157, 455–465 (1968).

    Article  CAS  PubMed  Google Scholar 

  40. Durairaj, A. & Limbach, P. A. Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Anal. Chim. Acta 612, 173–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Engel, J. D. & von Hippel, P. H. Effects of methylation on the stability of nucleic acid conformations: studies at the monomer level. Biochemistry 13, 4143–4158 (1974).

    Article  CAS  PubMed  Google Scholar 

  44. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015). The biophysical effects of m6A in RNA are analysed, determining that m6A destabilizes duplexes but stacks strongly on helices, which provides evidence for a structural transition in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015). A method is demonstrated to analyse the structure of RNAs in vivo ; the authors also show how such a technique can be used to connect RNA modification with structural information.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chem. Biol. 7, 885–887 (2011).

    Article  CAS  Google Scholar 

  47. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Choi, J. et al. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nature Struct. Mol. Biol. 23, 110–115 (2016).

    Article  CAS  Google Scholar 

  49. Li, F., Zhao, D., Wu, J. & Shi, Y. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24, 1490–1492 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Xu, C. et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nature Chem. Biol. 10, 927–929 (2014).

    Article  CAS  Google Scholar 

  51. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2016).

    Article  CAS  Google Scholar 

  56. Helm, M., Giegé, R. & Florentz, C. A. Watson–Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 38, 13338–13346 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, H. & Lam, S. L. Effect of 1-methyladenine on thermodynamic stabilities of double-helical DNA structures. FEBS Lett. 583, 1548–1553 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Zhou, H. et al. m1A and m1G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs. Nature Struct. Mol. Biol. 23, 803–810 (2016).

    Article  CAS  Google Scholar 

  59. Wang, S. & Kool, E. T. Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2'-hydroxyl effects. Biochemistry 34, 4125–4132 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu, L. et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136, 11582–11585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, H.-Y., Xiong, J., Qi, B.-L., Feng, Y.-Q. & Yuan, B.-F. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals. Chem. Commun. 52, 737–740 (2016).

    Article  CAS  Google Scholar 

  63. Davis, D. R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kierzek, E. et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Charette, M. & Gray, M. W. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49, 341–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, C., Zhao, X., Kierzek, R. & Yu, Y.-T. A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol. Cell. Biol. 30, 4108–4119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Hoernes, T. P. et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 44, 852–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Karijolich, J. & Yu, Y.-T. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernández, I. S. et al. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500, 107–110 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  71. Parisien, M., Yi, C. & Pan, T. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA 18, 355–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nigita, G., Veneziano, D. & Ferro, A. A-to-I RNA editing: current knowledge sources and computational approaches with special emphasis on non-coding RNA molecules. Front. Bioeng. Biotechnol. 3, 37 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Kawase, Y., Iwai, S., Inoue, H., Miura, K. & Ohtsuka, E. Studies on nucleic acid interactions: I. Stabilities of mini-duplexes (dG2A4XA4G2-dC2T4YT4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases. Nucleic Acids Res. 14, 7727–7736 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim, V. I. & Curran, J. F. Analysis of codon:anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA 7, 942–957 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Feng, Y., Sansam, C. L., Singh, M. & Emeson, R. B. Altered RNA editing in mice lacking ADAR2 autoregulation. Mol. Cell. Biol. 26, 480–488 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Serra, M. J., Smolter, P. E. & Westhof, E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res. 32, 1824–1828 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wagner, R. W., Smith, J. E., Cooperman, B. S. & Nishikura, K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells. Proc. Natl Acad. Sci. USA 86, 2647–2651 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lehmann, K. A. & Bass, B. L. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39, 12875–12884 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weissbach, R. & Scadden, A. D. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 18, 462–471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ng, S. K., Weissbach, R., Ronson, G. E. & Scadden, A. D. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res. 41, 9786–9799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nature Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  Google Scholar 

  85. Chen, L. L. & Carmichael, G. G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467–478 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, B. et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276–289 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosenberg, B. R., Hamilton, C. E., Mwangi, M. M., Dewell, S. & Papavasiliou, F. N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nature Struct. Mol. Biol. 18, 230–236 (2011).

    Article  CAS  Google Scholar 

  89. Blanc, V. et al. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol. 15, R79 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  91. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nature Chem. Biol. 9, 18–20 (2013).

    Article  CAS  Google Scholar 

  92. Singer, B. & Grunberger, D. in Molecular Biology of Mutagens and Carcinogens, Ch. 4, 45–96 (Plenum, 1983).

    Book  Google Scholar 

  93. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chem. Biol. 10, 93–95 (2014).

    Article  ADS  CAS  Google Scholar 

  94. Ping, X. L. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thiagarajan, D., Dev, R. R. & Khosla, S. The DNA methyltranferase Dnmt2 participates in RNA processing during cellular stress. Epigenetics 6, 103–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Huber, S.M. et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. Chembiochem. 16, 752–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Henderson, J. O., Blanc, V. & Davidson, N. O. Isolation, characterization and developmental regulation of the human apobec-1 complementation factor (ACF) gene. Biochim. Biophys. Acta 1522, 22–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Hamma, T. & Ferré-D'Amaré, A. R. Pseudouridine synthases. Chem. Biol. 13, 1125–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Kiss, A. M., Jady, B. E., Bertrand, E. & Kiss, T. Human box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24, 5797–5807 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health (GM110050 and GM106067) for support. E.M.H. acknowledges the US National Science Foundation for a Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Kool.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harcourt, E., Kietrys, A. & Kool, E. Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346 (2017). https://doi.org/10.1038/nature21351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing