Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implications of agricultural transitions and urbanization for ecosystem services

Subjects

Abstract

Historically, farmers and hunter-gatherers relied directly on ecosystem services, which they both exploited and enjoyed. Urban populations still rely on ecosystems, but prioritize non-ecosystem services (socioeconomic). Population growth and densification increase the scale and change the nature of both ecosystem- and non-ecosystem-service supply and demand, weakening direct feedbacks between ecosystems and societies and potentially pushing social–ecological systems into traps that can lead to collapse. The interacting and mutually reinforcing processes of technological change, population growth and urbanization contribute to over-exploitation of ecosystems through complex feedbacks that have important implications for sustainable resource use.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The green-loop to red-loop transition.
Figure 2: Detailed interactions and feedbacks during the transitional period between green and red loops.
Figure 3: States, traps and transitions along the rural to urban gradient.
Figure 4: Development of cereal production in Niger between 1960 and 2014.

Similar content being viewed by others

References

  1. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009). In this paper, the authors report that Earth's resources are finite and we are already living unsustainably in some areas.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Millennium Assessment. Ecosystems and Human Wellbeing: Biodiversity Synthesis (Island, 2005).

  3. United Nations Department of Economic and Social Affairs Population Division. World Population Prospects: The 2012 Revision, Volume I: Comprehensive Tables http://esa.un.org/wpp/documentation/publications.htm (United Nations, 2013).

  4. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. O'Brien, K. L. & Leichenko, R. M. Double exposure: assessing the impacts of climate change within the context of economic globalization. Glob. Environ. Change 10, 221–232 (2000).

    Article  Google Scholar 

  7. Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rabotyagov, S. S., Kling, C. L., Gassman, P. W., Rabalais, N. N. & Turner, R. E. The economics of dead zones: causes, impacts, policy challenges, and a model of the gulf of Mexico hypoxic zone. Rev. Environ. Econ. Policy 8, 58–79 (2014).

    Article  Google Scholar 

  9. Cramer, W. et al. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Phil. Trans. R. Soc. Lond. B 359, 331–343 (2004).

    Article  CAS  Google Scholar 

  10. Child, M. F., Cumming, G. S. & Amano, T. Assessing the broad-scale impact of agriculturally transformed and protected area landscapes on avian taxonomic and functional richness. Biol. Conserv. 142, 2593–2601 (2009).

    Article  Google Scholar 

  11. Norberg, J. & Cumming, G. S. Complexity Theory for a Sustainable Future (Columbia Univ. Press, 2008).

    Google Scholar 

  12. Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

    Article  Google Scholar 

  14. Millennium Assessment. Ecosystems and Human Well-being: a Framework for Assessment. A Report of the Conceptual Framework Working Group of the Millennium Ecosystem Assessment (Island, 2003).

  15. Crossman, N. D. et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 4, 4–14 (2013).

    Article  Google Scholar 

  16. Burkhard, B., Kroll, F., Nedkov, S. & Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 21, 17–29 (2012).

    Article  Google Scholar 

  17. Martínez-Harms, M. J. & Balvanera, P. Methods for mapping ecosystem service supply: a review. Inter. J. Biodiv. Sci. Ecosyst. Serv. Mgmt 8, 17–25 (2012).

    Article  Google Scholar 

  18. Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143–150 (2002).

    Article  Google Scholar 

  19. Revilla, E. & Sáenz, M. J. Supply chain disruption management: global convergence vs national specificity. J. Bus. Res. 67, 1123–1135 (2014).

    Article  Google Scholar 

  20. Mooney, H. A., Duraiappah, A. & Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl Acad. Sci. USA 110, 3665–3672 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Reyers, B. et al. Getting the measure of ecosystem services: a social-ecological approach. Front. Ecol. Environ. 11, 268–273 (2013). This paper reports that policy-related indicators for development goals have focused almost entirely on ecosystems, without effective monitoring of the socioeconomic systems that often drive ecosystem change.

    Article  Google Scholar 

  23. Perrings, C. et al. Ecosystem services for 2020. Science 330, 323–324 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Article  Google Scholar 

  25. Scheffer, M. & Westley, F. R. The evolutionary basis of rigidity: locks in cells, minds, and society. Ecol. Soc. 12, 36 (2007).

    Article  Google Scholar 

  26. Chapin, F. S. et al. Directional changes in ecological communities and social-ecological systems: a framework for prediction based on Alaskan examples. Am. Nat. 168, S36–S49 (2006).

    Article  PubMed  Google Scholar 

  27. Boserup, E. Population and Technological Change: a Study of Long-term Trends (Univ. Chicago, 1981).

    Google Scholar 

  28. Zeder, M. A. Domestication and early agriculture in the Mediterranean basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA 105, 11597–11604 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Livi-Bacci, M. A Concise History of World Population (Wiley, 2012).

    Google Scholar 

  30. Deutscher Bauernverband (German Farmers' Union). Situationsbericht 2013 (Deutscher Bauernverband, 2013).

  31. Rodriguez, J. P. et al. in Millennium Ecosystem Assessment Volume 2: Scenarios Assessment Ch. 11 (Island Press, 2005).

    Google Scholar 

  32. Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ 7, 4–11 (2009).

    Article  Google Scholar 

  34. Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).

    Article  PubMed  Google Scholar 

  35. Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495–509 (2013).

    Article  ADS  Google Scholar 

  37. Nevens, F., Frantzeskaki, N., Gorissen, L. & Loorbach, D. Urban transition labs: co-creating transformative action for sustainable cities. J. Cleaner Prod. 50, 111–122 (2013).

    Article  Google Scholar 

  38. Berkes, F. Sacred Ecology: Traditional Ecological Knowledge and Resource Management (Taylor and Francis, 1999).

    Google Scholar 

  39. Tengö, M. Management Practices for Dealing with Uncertainty and Change: Social-Ecological Systems in Tanzania and Madagascar. PhD thesis, Stockholm Univ. (2004).

    Google Scholar 

  40. Soma, T. Contemporary falconry in the Altai-Kazakh in Western Mongolia. Int. J. Intangible Heritage 7, 103–111 (2012).

    Google Scholar 

  41. Young, H. & Jacobsen, K. No way back? Adaptation and urbanization of IDP livelihoods in the Darfur Region of Sudan. Dev. Change 44, 125–145 (2013).

    Article  Google Scholar 

  42. Smith, A. & Garnier, M. An Inquiry into the Nature and Causes of the Wealth of Nations (Nelson, 1845).

    Google Scholar 

  43. Romer, P. M. Endogenous technological change. J. Polit. Econ. 98, S71–S102 (1990). This paper develops a model that explains how economic growth arises from endogenous technological change.

    Article  Google Scholar 

  44. Matsuyama, K. Agricultural productivity, comparative advantage, and economic growth. J. Econ. Theory 58, 317–334 (1992). The key theoretical contribution of this paper is the finding that the effect of agricultural productivity on economic growth and industrialization depends on the openness of an economy.

    Article  MATH  Google Scholar 

  45. Wu, J. Urban ecology and sustainability: the state-of-the-science and future directions. Landsc. Urban Plan. 125, 209–221 (2014).

    Article  Google Scholar 

  46. Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).

    Article  Google Scholar 

  47. Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Ostrom, E. How types of goods and property rights jointly affect collective action. J. Theor. Polit. 15, 239–270 (2003). This paper lays out a set of premises that explain the conditions that determine the effectiveness of institutions in common property systems.

    Article  Google Scholar 

  49. McGinnis, M. D. An introduction to IAD and the language of the Ostrom workshop: a simple guide to a complex framework. Policy Stud. J. 39, 169–183 (2011).

    Article  Google Scholar 

  50. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).

    Article  Google Scholar 

  52. Leamer, E. E., Maul, H., Rodriguez, S. & Schott, P. K. Does natural resource abundance increase Latin American income inequality? J. Dev. Econ. 59, 3–42 (1999).

    Article  Google Scholar 

  53. Lebel, L. et al. Industrial transformation and shrimp aquaculture in Thailand and Vietnam: pathways to ecological, social, and economic sustainability? AMBIO 31, 311–323 (2002).

    Article  PubMed  Google Scholar 

  54. Ocampo, J. & Parra-Lancourt, M. The term of trade for commodity since the mid 19th century. J. lberian Latin Am. Econ. Hist. 28, 11–43 (2009).

    Article  Google Scholar 

  55. DeFries, R. & Pandey, D. Urbanization, the energy ladder and forest transitions in India's emerging economy. Land Use Policy 27, 130–138 (2010).

    Article  Google Scholar 

  56. Ishii, H. T. et al. Integrating ecological and cultural values toward conservation and utilization of shrine/temple forests as urban green space in Japanese cities. Landscape Ecol. Eng. 6, 307–315 (2010).

    Article  Google Scholar 

  57. Genske, D. & Ruff, A. in Proc. 10th IAEG Int. Congress 82 http://www.iaeg.info/iaeg2006/start.htmI (2006).

    Google Scholar 

  58. Getter, K. L. & Rowe, D. B. The role of extensive green roofs in sustainable development. HortScience 41, 1276–1285 (2006).

    Article  Google Scholar 

  59. Hofsten, E. & Lundstrom, H. Swedish Population History: Main Trends from 1750 to 1970 (National Central Bureau of Statistics, 1976).

    Google Scholar 

  60. Lobell, H., Schön, L. & Krantz, O. Swedish historical national accounts, 1800–2000: principles and implications of a new generation. Scand. Econ. Hist. Rev. 56, 142–159 (2008).

    Article  Google Scholar 

  61. Einhorn, E. & Logue, J. Modern Welfare States: Politics and Policies in Social Democratic Scandinavia (Praeger Publishers, 1989).

    Google Scholar 

  62. Schön, L. Internal and external factors in Swedish industrialization. Scand. Econ. Hist. Rev. 45, 209–223 (1997).

    Article  Google Scholar 

  63. Björklund, J., Limburg, K. E. & Rydberg, T. Impact of production intensity on the ability of the agricultural landscape to generate ecosystem services: an example from Sweden. Ecol. Econom. 29, 269–291 (1999).

    Article  Google Scholar 

  64. Statistics Sweden. http://www.scb.se/en (Statistics Sweden, 2013).

  65. Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Angelstam, P. et al. Protecting forest areas for biodiversity in Sweden 1991–2010: policy implementation process and outcomes on the ground. Silva Fennica 45, 1111–1133 (2011).

    Article  Google Scholar 

  67. Holmlund, C. M. & Hammer, M. Ecosystem services generated by fish populations. Ecol. Econ. 29, 253–268 (1999).

    Article  Google Scholar 

  68. Jansson, Å., Folke, C., Rockström, J., Gordon, L. & Falkenmark, M. Linking freshwater flows and ecosystem services appropriated by people: the case of the Baltic Sea drainage basin. Ecosystems 2, 351–366 (1999).

    Article  Google Scholar 

  69. Stoate, C. et al. Ecological impacts of early 21st century agricultural change in Europe — a review. J. Environ. Manage. 91, 22–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. McIntosh, R. J. & McIntosh, S. K. The inland Niger delta before the empire of Mali: evidence from Jenne-jeno. J. Afr. Hist. 22, 1–22 (1981).

    Article  Google Scholar 

  71. Bationo, A., Lompo, F. & Koala, S. Research on nutrient flows and balances in West Africa: state-of-the art. Agric. Ecosyst. Environ. 71, 19–35 (1998).

    Article  CAS  Google Scholar 

  72. FAOSTAT. Crops: Primary Production and Trade Databases http://faostat.fao.org/ Accessed Dec 2013 (FAO, 2013).

  73. Brinkmann, K., Schumacher, J., Dittrich, A., Kadaore, I. & Buerkert, A. Analysis of landscape transformation processes in and around four West African cities over the last 50 years. Landsc. Urban Plan. 105, 94–105 (2012).

    Article  Google Scholar 

  74. Buerkert, A. & Schlecht, E. Agricultural innovations in small-scale farming systems of Sudano-Sahelian West Africa: some prerequisites for success. Secheresse 24, 322–329 (2013). This paper reports that factors driving the success of agricultural innovations in sub-Saharan Africa are their capacity to enhance farmers' access to markets, the possibility to adopt an innovation with only small amounts of capital, and limited risk of failure despite high rainfall variability.

    Google Scholar 

  75. Mortimore, M. & Turner, B. Does the Sahelian smallholders' management of woodland, farm trees, rangeland support the hypothesis of human-induced desertification? J. Arid Environ. 63, 567–595 (2005).

    Article  ADS  Google Scholar 

  76. Tappan, G. & McGahuey, M. Tracking environmental dynamics and agricultural intensification in southern Mali. Agric. Syst. 94, 38–51 (2007).

    Article  Google Scholar 

  77. The National Bureau of Statistics of Beijing. Beijing Statistical Yearbook (ed. Xiuqin, Y.) (Chinese Statistics, 2010).

  78. Zhang, S., Deng, L., Yue, P. & Cui, H. Study on Water Tariff Reform and Income Impacts in China's Metropolitan Areas: the Case of Beijing http://documents.worldbank.org/curated/en/2007/07/10119647/study-water-tariff-reform-income-impacts-chinas-metropolitan-areas-case-beijing (World Bank, 2007).

    Google Scholar 

  79. Huang, J., Zhang, H.-L., Tong, W.-J. & Chen, F. The impact of local crops consumption on the water resources in Beijing. J. Cleaner Production 21, 45–50 (2012).

    Article  CAS  Google Scholar 

  80. State Environmental Protection Administration of China. SEPA Report [in Chinese] http://www.sepa.gov.cn/eic/652466692596695040/20040602/1050958.shtml (SEPA, 2004).

  81. Johnson, T. M., Liu, F. & Newfarmer, R. Clear Water, Blue Skies: China's Environment in the New Century (World Bank, 1997).

    Book  Google Scholar 

  82. Liu, X. J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Shen, J. L. et al. High concentrations and dry deposition of reactive N species at two sites in the North China Plain. Environ. Pollut. 157, 3106–3113 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Guo, J. H. et al. Significant soil acidification in major Chinese croplands. Science 327, 1008–1010 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Zhuang, G. S., Guo, J. H., Yuan, H. & Zhao, C. Y. The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment. Chin. Sci. Bull. 46, 895–900 (2001).

    Article  CAS  Google Scholar 

  86. Gibbs, H. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  87. Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Article  Google Scholar 

  88. Zimmerman, B., Peres, C. A., Malcolm, J. R. & Turner, T. Conservation and development alliances with the Kayapo of south-eastern Amazonia, a tropical forest indigenous people. Environ. Conserv. 28, 10–22 (2001).

    Article  Google Scholar 

  89. Smith, E. A. & Wishnie, M. Conservation and subsistence in small-scale societies. Annu. Rev. Anthropol. 29, 493–524 (2000).

    Article  Google Scholar 

  90. Daily, G. C. & Ehrlich, P. R. Socioeconomic equity, sustainability, and Earth's carrying capacity. Ecol. Appl. 6, 991–1001 (1996). This paper reports that increasing equity can help to increase food production and reduce fertility rates, but runaway consumption must be curbed for sustainability.

    Article  Google Scholar 

  91. Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 45, 1–28 (1955).

    Google Scholar 

  92. Dasgupta, S., Laplante, B., Wang, H. & Wheeler, D. Confronting the environmental Kuznets curve. J. Econ. Perspect. 16, 147–168 (2002).

    Article  Google Scholar 

  93. Stern, D. I. The rise and fall of the environmental Kuznets curve. World Dev. 32, 1419–1439 (2004).

    Article  Google Scholar 

  94. Costanza, R. L. et al. Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature? Ambio 36, 522–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Rasmussen, L. V. & Reenberg, A. Collapse and recovery in Sahelian agro-pastoral systems: rethinking trajectories of change. Ecol. Soc. 17, 14 (2012).

    Google Scholar 

  97. Tainter, J. A. The Collapse of Complex Societies (Cambridge Univ. Press, 1988).

    Google Scholar 

  98. Cumming, G. S., Cumming, D. H. M. & Redman, C. L. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol. Soc. 11, 14 (2006). This paper argues that mismatches in the scales at which ecosystems vary and the institutional levels at which responsibility for ecosystem management resides can lead to various management problems.

    Article  Google Scholar 

  99. van Beers, C. & van den Bergh, J. C. Perseverance of perverse subsidies and their impact on trade and environment. Ecol. Econ. 36, 475–486 (2001).

    Article  Google Scholar 

  100. Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996). This paper states that attempts to maximize offtake from production systems often create vulnerabilities in those systems, leading to collapse.

    Article  Google Scholar 

Download references

Acknowledgements

G.S.C. thanks the Universität Kassel (http://www.icdd.uni-kassel.de) and Georg-August-Universität Göttingen for travel funding. This research was partially supported by a James S. McDonnell Foundation grant to G.S.C. and benefitted from discussions between A.B. and E.S. in BU1308/5-3, SCHL587/4-3 and the UrbanFood project, funded by the Volkswagen Foundation (No. I/82 189); between S.v.C-T. and T.T. within the RTG 1644 (Scaling Problems in Statistics); and the discussions of T.T. within the CRC 990 (EFForTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme S. Cumming.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cumming, G., Buerkert, A., Hoffmann, E. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014). https://doi.org/10.1038/nature13945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13945

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing