Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global carbon dioxide emissions from inland waters

An Erratum to this article was published on 19 March 2014

This article has been updated

Abstract

Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8  petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of stream and river gas exchange parameters.
Figure 2: Maps of lake and reservoir gas exchange parameters.

Similar content being viewed by others

Change history

References

  1. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009)

    Article  ADS  Google Scholar 

  2. Kempe, S. Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. J. Geophys. Res. 89, 4657–4676 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Park, P. K., Hager, S. W. & Cissell, M. C. Carbon dioxide partial pressure in the Columbia river. Science 166, 867–868 (1969)

    Article  ADS  CAS  Google Scholar 

  4. Raymond, P. A., Caraco, N. F. & Cole, J. J. Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20, 381–390 (1997)

    Article  CAS  Google Scholar 

  5. Frankignoulle, M. et al. Carbon dioxide emission from European estuaries. Science 282, 434–436 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Carbon dioxide evasion from central Amazonian wetlands as a significant source of atmospheric CO2 in the tropics. Nature 416, 617–620 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Johnson, M. S. et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 35, L17401 (2008)

    Article  ADS  Google Scholar 

  9. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839–842 (2011)

    Article  ADS  CAS  Google Scholar 

  10. Aufdenkampe, A. K. et al. Rivering coupling of biogeochemical cycles between land, oceans and atmosphere. Front. Ecol. Environ 9, 53–60 (2011)

    Article  Google Scholar 

  11. Battin, T. J. et al. The boundless carbon cycle. Nature Geosci. 2, 598–600 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007)

    Article  Google Scholar 

  13. Richey, J. E. in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World (eds Field, C. B. & Raupach, M. R. ) 329–341 (Scope 62, Island, 2004)

    Google Scholar 

  14. Downing, J. A. & Duarte, C. M. in Encyclopedia of Inland Waters 469–478 (Academic, 2009)

    Google Scholar 

  15. Lehner, B. & Doll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004)

    Article  ADS  Google Scholar 

  16. McDonald, C. P., Rover, J. A., Stets, E. G. & Striegl, R. G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57, 597–606 (2012)

    Article  ADS  Google Scholar 

  17. Buffam, I. et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob. Change Biol. 17, 1193–1211 (2011)

    Article  ADS  Google Scholar 

  18. Christensen, T. R. et al. A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Phil. Trans. R. Soc. A 365, 1643–1656 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Humborg, C. et al. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob. Change Biol. 16, 1966–1978 (2009)

    Article  ADS  Google Scholar 

  20. Jonsson, A. et al. Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J. Hydrol. 334, 141–150 (2007)

    Article  ADS  Google Scholar 

  21. Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Read, J. S. et al. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys. Res. Lett. 39, L09405 (2012)

    Article  ADS  Google Scholar 

  23. Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. R. & Stets, E. G. Carbon dioxide and methane emissions from the Yukon River system. Glob. Biogeochem. Cycles 26, GB0E05 (2012)

    Article  Google Scholar 

  24. Lehner, B., Verdin, K. & Jarvis, J. New global hydrograph derived from spaceborne elevation data. Eos 89, 93–94 (2008)

    ADS  Google Scholar 

  25. Dodds, P. S. & Rothman, D. H. Geometry of river networks. I. Scaling, fluctuations, and deviations. Physical Rev. E 63, 016115 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Leopold, L. B. & Maddock, T. Geological Survey Professional Paper 252 57 (US Government Printing Office, 1953)

    Google Scholar 

  27. Fekete, B. M., Vorosmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16, 15 (2002)

    Article  Google Scholar 

  28. Alin, S. R. et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. 116, G01009 (2011)

    Article  Google Scholar 

  29. Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012)

    Article  Google Scholar 

  30. Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S. & Raymond, P. A. What controls the spatial patterns of the riverine carbonate system? A case study for North America. Chem. Geol. 337–338, 114–127 (2013)

    Article  ADS  Google Scholar 

  31. Meybeck, M., Durr, H. H. & Vorosmarty, C. J. Global coastal segmentation and its river catchment contributors: a new look at land-ocean linkage. Glob. Biogeochem. Cycles 20, GB1S90 (2006)

    Article  Google Scholar 

  32. Prigent, C., Papa, F., Aires, F., Rossow, W. B. & Matthews, E. Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res. 112, D12107 (2007)

    Article  ADS  Google Scholar 

  33. Downing, J. A. et al. Global abundance and size distribution of streams and rivers. Inland Wat. 2, 229–236 (2012)

    Article  Google Scholar 

  34. Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006)

    Article  ADS  Google Scholar 

  35. Meybeck, M. in Physics and Chemistry of Lakes (eds Lerman, D., Imboden, M. & Gat, J. R. ) 1–35 (Springer, 1995)

    Book  Google Scholar 

  36. Cole, J. J. & Caraco, N. F. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar. Freshw. Res. 52, 101–110 (2001)

    Article  CAS  Google Scholar 

  37. Abril, G. et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob. Biogeochem. Cycles 19, GB4007 (2005)

    Article  ADS  Google Scholar 

  38. Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geosci. 4, 593–596 (2011)

    Article  ADS  CAS  Google Scholar 

  39. McDonald, C. P., Stets, E. G. & Striegl, R. G. B. D. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in lakes and reservoirs of the contiguous United States. Glob. Biogeochem. Cycles 27, 285–295 (2013)

    Article  CAS  Google Scholar 

  40. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009)

    Article  ADS  CAS  Google Scholar 

  41. Cole, J. J., Caraco, N. F., Kling, G. W. & Kratz, T. K. Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568–1570 (1994)

    Article  ADS  CAS  Google Scholar 

  42. Kortelainen, P. et al. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob. Change Biol. 12, 1554–1567 (2006)

    Article  ADS  Google Scholar 

  43. Duarte, C. M. et al. CO2 emissions from saline lakes: a global estimate of a surprisingly large flux. J. Geophys. Res. 113, G04041 (2008)

    Article  Google Scholar 

  44. Maberly, S. C., Barker, P. A., Stott, A. W. & De Ville, M. M. Catchment productivity controls CO2 emissions from lakes. Nature Clim. Change 3, 391–394 (2013)

    Article  ADS  CAS  Google Scholar 

  45. Davidson, E. A., Figueiredo, R. O., Markewitz, D. & Aufdenkampe, A. K. Dissolved CO2 in small catchment streams of eastern Amazonia: a minor pathway of terrestrial carbon loss. J. Geophys. Res. 115, G04005 (2010)

    Article  ADS  Google Scholar 

  46. Lauerwald, R., Hartmann, J., Ludwig, W. & Moosdorf, N. Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America. J. Geophys. Res. 117, G01027 (2012)

    Article  ADS  Google Scholar 

  47. Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature http://dx.doi.org/10.1038/nature12797 (in the press)

  48. Sabine, C. L. et al. in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World (eds Field, C. B. & Raupach, M. R. ) 17–45 (Scope 62, Island, 2004)

  49. Raymond, P. A., Oh, N. H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451, 449–452 (2008)

    Article  ADS  CAS  Google Scholar 

  50. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geosci. 6, 597–607 (2013)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

P.A.R. and M.H were partly funded by a NASA grant (NNX11AH68G) to P.A.R. P.A.R. also received support from a fellowship from L-IPSL labex program. S.S. was supported by Formas. R.L. and J.H. were funded by the EU project GeoCarbon (U4603EUU1104) and by DFG (EXC 177 and DFG HA 4472/6-1). This represents a contribution to the RECCAP process. R.S. and D.B. are part of the Inland Water Science Group of the USGS LandCarbon Project.

Author information

Authors and Affiliations

Authors

Contributions

P.A.R. designed and performed this analysis and wrote most of the paper. S.S. performed the lake and reservoir CO2 and k analyses, and C.M. modelled lake and reservoir area data and provided material for these calculations for Supplementary Information. P.K. provided p CO 2 data and helped with lake analyses. R.L. and J.H. produced the global CO2 data set. M.H. provided the GIS technical input. D.B. assisted with the GIS technical input and overall analysis and helped produce the figures. R.S. provided input on the use of USGS data and contributed to the overall analysis. E.M. provided COSCAT data on global discharge and dissolved organic carbon. H.D. provided COSCAT information and input on GIS analysis. P.K., C.H. and M.M. provided data for the lake CO2 global data set. P.C. provided assistance with the sensitivity analysis and writing the final paragraph. P.G. provided data necessary to determine average watershed area for COSCAT regions. All authors read and commented on drafts of this paper.

Corresponding author

Correspondence to Peter A. Raymond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-4, Supplementary Figures 1-7 and additional references. (PDF 1137 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, P., Hartmann, J., Lauerwald, R. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013). https://doi.org/10.1038/nature12760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12760

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing