Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet

Abstract

The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges1. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors2,3, and the topological properties of these states may have applications in quantum information4. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these ‘fractionalized excitations’ have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu3(OD)6Cl2 (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inelastic neutron scattering from the spin excitations, plotted in reciprocal space.
Figure 2: Inelastic neutron scattering measured along symmetry directions and at high-symmetry locations.
Figure 3: The measured dynamic structure factor along specific directions in reciprocal space with comparison to the nearest-neighbour singlet model.
Figure 4: The measured dynamic structure factor along the K–Γ–K direction within the (1, 0, 0) Brillouin zone.

Similar content being viewed by others

References

  1. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Lee, P. A. & Nagaosa, N. &. Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Ioffe, L. B. et al. Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002)

    Article  CAS  Google Scholar 

  5. Tennant, D. A., Cowley, R. A., Nagler, S. E. & Tsvelik, A. M. Measurement of the spin excitation continuum in one-dimensional KCuF3 using neutron scattering. Phys. Rev. B 52, 13368–13380 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Sachdev, S. Kagome- and triangular-lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Elser, V. Nuclear antiferromagnetism in a registered 3He solid. Phys. Rev. Lett. 62, 2405–2408 (1989)

    Article  ADS  CAS  Google Scholar 

  8. Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L. & Sindzingre, P. Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis. Phys. Rev. B 56, 2521–2529 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005)

    Article  CAS  Google Scholar 

  10. Freedman, D. E. et al. Site specific x-ray anomalous dispersion of the geometrically frustrated kagomé magnet herbertsmithite, ZnCu3(OH)6Cl2 . J. Am. Chem. Soc. 132, 16185–16190 (2010)

    Article  CAS  Google Scholar 

  11. Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2 . Phys. Rev. Lett. 98, 107204 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Mendels, P. et al. Quantum magnetism in the paratacamite family: towards an ideal kagomé lattice. Phys. Rev. Lett. 98, 077204 (2007)

    Article  ADS  CAS  Google Scholar 

  13. de Vries, M. A. et al. Scale-free antiferromagnetic fluctuations in the S = 1/2 kagome antiferromagnet herbertsmithite. Phys. Rev. Lett. 103, 237201 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Zorko, A. et al. Dzyaloshinsky-Moriya anisotropy in the spin-1/2 kagome compound ZnCu3(OH)6Cl2 . Phys. Rev. Lett. 101, 026405 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Han, T., Chu, S. & Lee, Y. S. Refining the spin Hamiltonian in the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2 using single crystals. Phys. Rev. Lett. 108, 157202 (2012)

    Article  ADS  Google Scholar 

  16. Yan, S., Huse, D. A. & White, S. R. Spin liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Han, T. H. et al. Synthesis and characterization of single crystals of the spin-1/2 kagome-lattice antiferromagnet Zn x Cu4–x (OH)6Cl2 . Phys. Rev. B 83, 100402(R) (2011)

    Article  ADS  Google Scholar 

  18. Imai, T., Fu, M., Han, T. H. & Lee, Y. S. Local spin susceptibility of the S = 1/2 kagome lattice in ZnCu3(OD)6Cl2 . Phys. Rev. B 84, 020411(R) (2011)

    Article  ADS  Google Scholar 

  19. Ofer, O., Keren, A., Brewer, J. H., Han, T. H. & Lee, Y. S. The herbertsmithite Hamiltonian: µSR measurements on single crystals. J. Phys. Condens. Matter 23, 164207 (2011)

    Article  ADS  Google Scholar 

  20. Wulferding, D. et al. Interplay of thermal and quantum spin fluctuations in the kagome lattice compound herbertsmithite. Phys. Rev. B 82, 144412 (2010)

    Article  ADS  Google Scholar 

  21. Birgeneau, R. J. et al. Instantaneous spin correlations in La2CuO4 . Phys. Rev. B 59, 13788–13794 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nature Mater. 4, 323–328 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-T c superconductivity. Phys. Rev. B 35, 8865–8868 (1987)

    Article  ADS  CAS  Google Scholar 

  24. Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter (Clarendon, 1984)

    Google Scholar 

  25. Helton, J. S. et al. Dynamic scaling in the susceptibility of the spin-1/2 Kagome lattice antiferromagnet herbertsmithite. Phys. Rev. Lett. 104, 147201 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Matan, K. et al. Spin waves in the frustrated kagomé lattice antiferromagnet KFe3(OH)6(SO4)2 . Phys. Rev. Lett. 96, 247201 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Hao, Z. & Tchernyshyov, O. Structure factor of low-energy spin excitations in a S = 1/2 kagome antiferromagnet. Phys. Rev. B 81, 214445 (2010)

    Article  ADS  Google Scholar 

  28. Singh, R. R. P. & Huse, D. A. Triplet and singlet excitations in the valence bond crystal phase of the kagome lattice Heisenberg model. Phys. Rev. B 77, 144415 (2008)

    Article  ADS  Google Scholar 

  29. Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected wavefunction study of spin-1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 98, 117205 (2007)

    Article  ADS  Google Scholar 

  30. Ryu, S., Motrunich, O. I., Alicea, J. & Fisher, M. P. A. Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice. Phys. Rev. B 75, 184406 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge T. Senthil, P. A. Lee, Z. Hao and O. Tchernyshyov for discussions, and J. Wen for assistance with data reduction. The work at MIT was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under grant no. DE-FG02-07ER46134. This work used facilities supported in part by the US National Science Foundation under agreement no. DMR-0944772. The work at IQM was supported by the DOE, Office of Basic Energy Sciences, Division of Material Sciences and Engineering under award DE-FG02-08ER46544.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.L. supervised all aspects of the research. T.-H.H. synthesized and characterized the sample. T.-H.H., J.A.R.-R., J.S.H. and C.B. collected the neutron scattering data. T.-H.H. analysed the data with input from Y.S.L., C.B., J.S.H. and J.A.R.-R. S.C. and D.G.N. aided in the sample preparation process. T.-H.H. and Y.S.L. wrote the manuscript with comments from all others. The manuscript reflects the contributions of all authors.

Corresponding authors

Correspondence to Tian-Heng Han or Young S. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Figures 1-3. (PDF 1211 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, TH., Helton, J., Chu, S. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012). https://doi.org/10.1038/nature11659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11659

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing