Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assembly of hybrid photonic architectures from nanophotonic constituents

Abstract

The assembly of hybrid nanophotonic devices from different fundamental photonic entities—such as single molecules, nanocrystals, semiconductor quantum dots, nanowires and metal nanoparticles—can yield functionalities that exceed those of the individual subunits. Combining these photonic elements requires nanometre-scale fabrication precision and potentially involves a material diversity that is incompatible with standard nanotechnological processes. Although merging these different systems on a single hybrid platform is at present challenging, it promises improved performance and novel devices. Particularly rapid progress is seen in the combination of plasmonic–dielectric constituents with quantum emitters that can be assembled on demand into fundamental model systems for future optical elements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanophotonic functional elements.
Figure 6: Basics of CQED.
Figure 7: Basics of surface plasmon polaritons.
Figure 2: Different approaches to assembling nanophotonic elements.
Figure 3: Stepwise AFM nanoassembly of a plasmonic nanoantenna.
Figure 4: Nanoassembled photonic–plasmonic wire structures.
Figure 5: Different systems assembled using scanning probes.

Similar content being viewed by others

References

  1. Pothier, H. et al. Single electron pump fabricated with ultrasmall normal tunnel-junctions. Physica B 169, 573–574 (1991)

    Article  ADS  Google Scholar 

  2. Likharev, K. K. Single-electron devices and their applications. Proc. IEEE 87, 606–632 (1999)

    Article  CAS  Google Scholar 

  3. Klein, D. L., Roth, R., Lim, A. K. L. & Alivisatos, A. P. . McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997)

    Article  CAS  ADS  Google Scholar 

  4. Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H. (eds) Spintronics (Semiconductors and Semimetals 82, Elsevier, 2008)

    Google Scholar 

  5. Prasad, P. N. Nanophotonics (Wiley, 2004)

    Book  Google Scholar 

  6. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  7. Huang, T. J. Recent developments in artificial molecular-machine-based active nanomaterials and nanosystems. MRS Bull. 33, 226–231 (2008)

    Article  CAS  Google Scholar 

  8. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007)

    Article  ADS  PubMed  Google Scholar 

  10. Folman, R., Krueger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002)

    Article  CAS  ADS  Google Scholar 

  11. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Cirac, J. I. & Zoller, P. A. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Decher, G. & Schlenoff, J. B. (eds) Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (Wiley, 2003)

    Google Scholar 

  15. Yin, Y. & Alivisatos, P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  17. You, C.-C., Verma, A. & Rotello, V. M. Engineering the nanoparticle-biomacromolecule interface. Soft Matter 2, 190–204 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  19. Berman P. R. ed. Cavity Quantum Electrodynamics (Academic, 1993)

    Google Scholar 

  20. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007)

    Book  Google Scholar 

  21. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Joannopoulos, J. D. in Photonic Crystals: Molding the Flow of Light ( Meade, R. D. & Winn, J. N. ) (Princeton Univ. Press, 1995)

    MATH  Google Scholar 

  23. Song, B.-S., Noda, S. & Asano, T. Photonic devices based on in-plane hetero photonic crystals. Science 300, 1537 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Bozhevolnyi, S. & García-Vidal, F. Focus on plasmonics. N. J. Phys. 10, 105001 (2008)

    Article  Google Scholar 

  25. Vasa, P. et al. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures. Phys. Rev. Lett. 101, 116801 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161–164 (2008)

    Article  CAS  ADS  Google Scholar 

  27. Englund, D., Faraon, A., Zhang, B., Yamamoto, Y. & Vuckovic, J. Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007)

    Article  ADS  PubMed  Google Scholar 

  28. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  29. Grangier, P., Sanders, B. & Vuckovic, J. (eds) Focus on single photons on demand. N. J. Phys. 6, (2004)

  30. Chang, D. E., Sørensen, A. S., Hemmer, P. A. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  31. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008)

    Article  CAS  ADS  Google Scholar 

  32. Moerland, R. J., Taminiau, T. H., Novotny, L., van Hulst, N. F. & Kuipers, L. Reversible polarization control of single photon emission. Nano Lett. 8, 606–610 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

  34. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Hofmann, H. F. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002)

    Article  ADS  CAS  Google Scholar 

  36. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

    Article  ADS  Google Scholar 

  37. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008)

    Article  CAS  ADS  Google Scholar 

  38. Waks, E. & Vučković, J. Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Briegel, H. J., Dür, W., Cirac, I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  CAS  ADS  Google Scholar 

  40. Faraon, A. et al. Dipole induced transparency in waveguide coupled photonic crystal cavities. Opt. Express 16, 12154–12162 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007)This paper put forward a proposal for a single-photon transistor using plasmons.

    Article  CAS  ADS  Google Scholar 

  42. Chen, J. et al. Demonstration of a quantum controlled-NOT gate in the telecommunications band. Phys. Rev. Lett. 100, 133603 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Sangu, S., Kobayashi, K., Shojiguchi, A. & Ohtsu, M. Logic and functional operations using a near-field optically coupled quantum-dot system. Phys. Rev. B 69, 115334 (2004)

    Article  ADS  CAS  Google Scholar 

  44. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009)This paper reported the enhancement of emission from single molecules coupled to a plasmonic antenna.

    Article  CAS  ADS  Google Scholar 

  45. Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008)

    Article  CAS  ADS  Google Scholar 

  46. Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  47. Sünner, T. et al. Scalable fabrication of optical resonators with embedded site-controlled quantum dots. Opt. Lett. 33, 1759–1761 (2008)

    Article  ADS  PubMed  Google Scholar 

  48. Fan, H. J., Werner, P. & Zacharias, M. Semiconductor nanowires: from self-organization to patterned growth. Small 2, 700–717 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. Mohan, A. et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon. 4, 302–306 (2010)

    Article  CAS  Google Scholar 

  50. Jonas, U., del Campo, A., Krüger, C., Glasser, G. & Boos, D. Colloidal assemblies on patterned silane layers. Proc. Natl Acad. Sci. USA 99, 5034–5039 (2002)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  51. Park, H. G. et al. Wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008)This paper reported a photonic structure using active semiconductor nanowires to light up photonic crystal waveguides.

    Article  CAS  Google Scholar 

  52. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  53. Binnig, G., Rohrer, H., Gerber & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Article  ADS  Google Scholar 

  54. Binnig, G., Quate, C. F. & Gerber Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  CAS  ADS  PubMed  Google Scholar 

  55. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)

    Article  CAS  ADS  Google Scholar 

  56. Kufer, S. K., Puchner, E. M., Gumpp, H., Liedl, T. & Gaub, H. E. Single-molecule cut-and-paste surface assembly. Science 319, 594–596 (2008)

    Article  CAS  PubMed  Google Scholar 

  57. Tong, L., Zhu, T. & Liu, Z. Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement. Appl. Phys. Lett. 92, 023109 (2008)

    Article  ADS  CAS  Google Scholar 

  58. Hsieh, S. et al. Imaging and manipulation of gold nanorods with an atomic force microscope. J. Phys. Chem. B 106, 231–234 (2002)

    Article  CAS  Google Scholar 

  59. Junno, T., Deppert, K., Montelius, L. & Samuelson, L. Controlled manipulation of nanoparticles with an atomic-force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995)

    Article  CAS  ADS  Google Scholar 

  60. Thelander, C. & Samuelson, L. AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. Nanotechnology 13, 108–113 (2002)

    Article  CAS  ADS  Google Scholar 

  61. Harel, E., Meltzer, S. E., Requicha, A. A. G., Thompson, M. E. & Koel, B. E. Fabrication of polystyrene latex nanostructures by nanomanipulation and thermal processing. Nano Lett. 5, 2624–2629 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  62. Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotechnol. 2, 145–155 (2007)

    Article  CAS  ADS  Google Scholar 

  63. Wang, Y., Zhang, Y., Li, B., Lü, J. & Hu, J. Capturing and depositing one nanoobject at a time: single particle dip-pen nanolithography. Appl. Phys. Lett. 90, 133102 (2007)

    Article  ADS  CAS  Google Scholar 

  64. Schröder, T. et al. Fiber-integrated diamond-based single photon source. Nano Lett. 11, 198–202 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nature Photon. 3, 569–576 (2009)

    Article  CAS  ADS  Google Scholar 

  66. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006)

    Article  CAS  ADS  Google Scholar 

  67. Prawer, S. & Greentree, A. D. Applied physics - diamond for quantum computing. Science 320, 1601–1602 (2008)

    Article  CAS  PubMed  Google Scholar 

  68. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  69. Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nano-assembled metal-diamond hybrid structure at room-temperature. Nano Lett. 9, 1694–1698 (2009)This paper reported plasmon-enhanced emission of single photons from a single defect centre.

    Article  CAS  ADS  PubMed  Google Scholar 

  70. Sonnefraud, Y. et al. Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy. Opt. Lett. 33, 611–613 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  71. Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  72. Yan, R., Pausauskie, P., Huang, J. & Yang, P. Direct photonic-plasmonic coupling and routing in single nanowires. Proc. Natl Acad. Sci. USA 106, 21045–21050 (2009)This paper reported the excitation of plasmons by connecting silver nanowires to an active SnO 2 nanoribbon.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  73. van der Sar, T. et al. Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011)

    Article  ADS  CAS  Google Scholar 

  74. Englund, D. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

  75. Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010)

    Article  ADS  CAS  Google Scholar 

  76. Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009)This paper reported all-electrical plasmon detection using a field-effect transistor.

    Article  CAS  ADS  Google Scholar 

  77. Hennessy, K. et al. Tuning photonic crystal nanocavity modes by wet chemical digital etching. Appl. Phys. Lett. 87, 021108 (2005)

    Article  ADS  CAS  Google Scholar 

  78. Shen, Y., Sweeney, T. M. & Wang, H. Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals. Phys. Rev. B 77, 033201 (2008)

    Article  ADS  CAS  Google Scholar 

  79. Wang, C. F. et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007)

    Article  ADS  CAS  Google Scholar 

  80. Rivoire, K. et al. Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities. Appl. Phys. Lett. 95, 123113 (2009)

    Article  ADS  CAS  Google Scholar 

  81. Nagpal, P., Lindquist, N. C., Oh, S.-H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  82. O’Brien, J., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009)This paper reviewed integrated quantum technologies based on optical chips and single photons.

    Article  ADS  CAS  Google Scholar 

  83. Meijer, J. et al. Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution. Appl. Phys. A 91, 567–571 (2008)

    Article  CAS  ADS  Google Scholar 

  84. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  85. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009)This paper reported the observation of spaser activity from a gold nanoparticle surrounded by a dye-doped silica shell.

    Article  CAS  ADS  PubMed  Google Scholar 

  86. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008)This paper reported electrical excitation of plasmons through coupling to an organic light-emitting-diode structure.

    Article  CAS  ADS  Google Scholar 

  87. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  88. Bennett, A. J. et al. Microcavity single-photon-emitting diode. Appl. Phys. Lett. 86, 181102 (2005)

    Article  ADS  CAS  Google Scholar 

  89. Sangu, S., Kobayashi, K., Shojiguchi, A. & Ohtsu, M. Logic and functional operations using a near-field optically coupled quantum-dot system. Phys. Rev. B 69, 115334 (2004)

    Article  ADS  CAS  Google Scholar 

  90. van der Sar, T. et al. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Appl. Phys. Lett. 94, 173104 (2009)

    Article  ADS  CAS  Google Scholar 

  91. Barclay, P. E., Santori, C., Fu, K.-M., Beausoleil, R. G. & Painter, O. Coherent interference effects in a nano-assembled optical cavity-QED system. Opt. Express 17, 8081–8097 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  92. Ampem-Lassen, E. et al. Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287–11294 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  93. Barth, M. et al. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett. 10, 891–895 (2010)This paper reported Fano-type resonances in a coupled system consisting of a photonic crystal cavity and gold nanoparticles.

    Article  CAS  ADS  PubMed  Google Scholar 

  94. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  95. Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  97. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  CAS  ADS  Google Scholar 

  98. Lippitz, M., van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  99. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge financial supported by the Deutsche Forschungsgemeinschaft (BE2224/9, Sfb 951) and the Bundesministerium für Bildung und Forschung (KEPHOSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Benson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011). https://doi.org/10.1038/nature10610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing