Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A carbon isotope challenge to the snowball Earth

Abstract

The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO2) during glaciation1. High partial pressures of atmospheric CO2 (; from 20,000 to 90,000 p.p.m.v.) in the aftermath of the Marinoan glaciation (635 Myr ago) have been inferred from both boron and triple oxygen isotopes2,3. These values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise1. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units4,5,6,7,8, provide estimates lower than 3,200 p.p.m.v.—and possibly as low as the current value of 400 p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isotope and age data for cap carbonates.
Figure 2: Relationship between photosynthetic fractionation factor ( ε p ), temperature and CO 2 concentrations.
Figure 3: Relationship between (p.p.m.v.) and Δ 17 O(O 2 ) for 20% and 1% O 2 , assuming a modern value for O 2 residence time of 1,200 yr.

Similar content being viewed by others

References

  1. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Article  CAS  ADS  Google Scholar 

  2. Kasemann, S. A., Hawkesworth, J. C., Prave, A. R., Fallick, A. E. & Pearson, P. N. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet. Sci. Lett. 231, 73–86 (2005)

    Article  CAS  ADS  Google Scholar 

  3. Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008)

    Article  CAS  ADS  Google Scholar 

  4. Shen, B. et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth Planet. Sci. Lett. 265, 209–228 (2008)

    Article  CAS  ADS  Google Scholar 

  5. McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Earth Planet. Sci. Lett. 105, 3197–3202 (2007)

    Google Scholar 

  6. Jiang, G. et al. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition. Earth Planet. Sci. Lett. 299, 159–168 (2010)

    Article  CAS  ADS  Google Scholar 

  7. Guo, Q. et al. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 140–157 (2007)

    Article  Google Scholar 

  8. Ader, M. et al. A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C. Earth Planet. Sci. Lett. 288, 213–227 (2009)

    Article  CAS  ADS  Google Scholar 

  9. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999)

    Article  CAS  ADS  Google Scholar 

  10. Kaufman, A. J. & Xiao, S. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425, 279–282 (2003)

    Article  CAS  ADS  Google Scholar 

  11. Young, S. A., Saltzman, M. R., Bergström, S. M., Leslie, S. A. & Xu, C. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian-Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 270, 166–178 (2008)

    Article  Google Scholar 

  12. Riccardi, A., Kump, L. R., Arthur, M. A. & D'Hondt, S. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 73–81 (2007)

    Article  Google Scholar 

  13. de Alvarenga, C. J. S., Santos, R. V. & Dantas, E. L. C-O-Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambr. Res. 131, 1–21 (2004)

    Article  CAS  ADS  Google Scholar 

  14. Corsetti, F. A. & Kaufman, A. J. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geochim. Cosmochim. Acta 115, 916–932 (2003)

    CAS  Google Scholar 

  15. Kaufman, A. J., Hayes, J. M., Knoll, A. H. & Germs, G. J. B. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effect of diagenesis and metamorphism. Precambr. Res. 49, 301–327 (1991)

    Article  CAS  ADS  Google Scholar 

  16. Narbonne, G. M., Kaufman, A. J. & Knoll, A. H. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Geol. Soc. Am. Bull. 106, 1281–1292 (1994)

    Article  CAS  ADS  Google Scholar 

  17. Knauth, L. P. & Kennedy, M. J. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009)

    Article  CAS  ADS  Google Scholar 

  18. Bristow, T. F. & Kennedy, M. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geol. Soc. Am. 36, 863–866 (2008)

    CAS  Google Scholar 

  19. Font, E., Trindade, R. I. F. & Nédélec, A. Detrital remanent magnetization in haematite-bearing Neoproterozoic Puga cap dolostone, Amazon craton: a rock magnetic and SEM study. Geophys. J. Int. 163, 491–500 (2005)

    Article  ADS  Google Scholar 

  20. Crafts-Brandner, S. J. & Salvucci, M. E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2 . Proc. Natl Acad. Sci. USA 97, 13430–13435 (2000)

    Article  CAS  ADS  Google Scholar 

  21. Huber, R., Huber, H. & Stetter, K. O. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol. Rev. 24, 615–623 (2000)

    Article  CAS  Google Scholar 

  22. Corsetti, F. A., Olcott, A. N. & Bakermans, C. The biotic response to Neoproterozoic snowball Earth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 114–130 (2006)

    Article  Google Scholar 

  23. Elie, M., Nogueira, A. C. R., Nédélec, A., Trindade, R. I. F. & Kenig, F. A red algal bloom in the aftermath of the Marinoan snowball Earth. Terra Nova 19, 303–308 (2007)

    Article  CAS  ADS  Google Scholar 

  24. Goericke, R. & Fry, B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Glob. Biogeochem. Cycles 8, 85–90 (1994)

    Article  CAS  ADS  Google Scholar 

  25. Rost, B., Riebesell, U., Burkhardt, S. & Sültemeyer, D. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 48, 55–67 (2003)

    Article  ADS  Google Scholar 

  26. Werne, J. P. & Hollander, D. J. Balancing supply and demand: controls on carbon isotope fractionation in the Cariaco Basin (Venezuela) Younger Dryas to present. Mar. Chem. 92, 275–293 (2004)

    Article  CAS  Google Scholar 

  27. Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998)

    Article  CAS  ADS  Google Scholar 

  28. Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010)

    Article  CAS  Google Scholar 

  29. Balci, N., Shanks, W. C., Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71, 3796–3811 (2007)

    Article  CAS  ADS  Google Scholar 

  30. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: A critical review. Am. J. Sci. 298, 621–672 (1998)

    Article  CAS  ADS  Google Scholar 

  31. Li, C. et al. A stratified redox model for the Ediacaran ocean. Science 328, 80–83 (2010)

    Article  CAS  ADS  Google Scholar 

  32. Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier Oceanography Series, 65, 2001)

    Google Scholar 

  33. Sheppard, S. & Schwarcz, H. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib. Mineral. Petrol. 26, 161–198 (1970)

    Article  CAS  ADS  Google Scholar 

  34. Mook, W. G., Bommerson, C. J. & Staberman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974)

    Article  CAS  ADS  Google Scholar 

  35. Royer, D. L., Berner, R. A. & Beerling, D. J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 (2001)

    Article  CAS  ADS  Google Scholar 

  36. Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995)

    Article  CAS  ADS  Google Scholar 

  37. Pancost, R. D., Freeman, K. H. & Wakeham, S. G. Controls on the carbon-isotope compositions of compounds in Peru surface waters. Org. Geochem. 30, 319–340 (1999)

    Article  CAS  Google Scholar 

  38. Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974)

    Article  CAS  Google Scholar 

  39. Béhar, F., Beaumont, V., De, H. L. & Penteado, B. Rock-Eval 6 technology: performances and developments. Rev. Inst. Fr. Pet. 56, 111–134 (2001)

    Google Scholar 

Download references

Acknowledgements

We thank the Geochemistry division of IFP Energie nouvelle for performing Rock-Eval analyses. The work benefited from discussions with M. Bonifacie, G. LeHir, G. Paris and H. Strauss. Research was supported by a French MRT doctoral fellowship and a SETSI grant to P.S., and two INSU (SYSTER) grants to M.A.. R.I.F.T. and A.C.R.N. were supported by the INCT-Geociam programme, and by FAPESP and CNPq grants. J.L. was supported by the NASA Astrobiology Institute under cooperative agreement NNA09DA76 to the Penn State Astrobiology Research Center. This is IPGP contribution 3211.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and R.I.F.T. conceived the work. P.S., M.A., R.I.F.T. and A.C.R.N. did the sampling. P.S., M.A., R.I.F.T. and P.C. wrote the paper and most of the Supplementary Information. P.S. carried out carbon isotope analyses. P.S. and M.E. did molecular organic geochemistry analyses and wrote the related Supplementary Information. M.A. and M.E. wrote Supplementary Information corresponding to the Rock-Eval data. J.L. performed triple-oxygen modelling and wrote the corresponding parts of the main text and Supplementary Information. A.C.R.N. organized the field work and contributed the geological setting of samples. All authors discussed results and contributed to the manuscript.

Corresponding author

Correspondence to P. Sansjofre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Figures 1-11 with legends, Supplementary References and Supplementary Tables 1-2. (PDF 1947 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansjofre, P., Ader, M., Trindade, R. et al. A carbon isotope challenge to the snowball Earth. Nature 478, 93–96 (2011). https://doi.org/10.1038/nature10499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10499

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing