Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chronological evidence that the Moon is either young or did not have a global magma ocean

Abstract

Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth1,2,3. The Earth’s Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type2,3,4. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems5,6,7,8,9. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the 207Pb–206Pb, 147Sm–143Nd and 146Sm–142Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pb–Pb isochron diagram.
Figure 2: Sm–Nd isochron diagrams.
Figure 3: Summary of lunar ages.

Similar content being viewed by others

References

  1. Lapen, T. J. et al. A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328, 347–351 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Wood, J. A., Dickey, J. S., Marvin, U. B. & Powell, B. N. Lunar anorthosites and a geophysical model of the moon. Proc. Lunar Planet. Sci Conf. I, 965 (1970)

    ADS  Google Scholar 

  3. Smith, J. A. et al. Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. Proc. Lunar Planet. Sci Conf. I, 1, 149 (1970)

    Google Scholar 

  4. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the source of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Carlson, R. W. & Lugmair, G. W. The age of ferroan anorthosite 60025: oldest crust on a young Moon? Earth Planet. Sci. Lett. 90, 119–130 (1988)

    Article  ADS  CAS  Google Scholar 

  6. Hanan, B. B. & Tilton, G. R. 60025—relict of primitive lunar crust. Earth Planet. Sci. Lett. 84, 15–21 (1987)

    Article  ADS  CAS  Google Scholar 

  7. Norman, M. D., Borg, L. E., Nyquist, L. E. & Bogard, D. D. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit. Planet. Sci. 38, 645–661 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Borg, L. E. et al. Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth element-depleted source. Geochim. Cosmochim. Acta 63, 2679–2691 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Alibert, C., Norman, M. D. & McCulloch, M. T. An ancient age for a ferroan anorthosite clast from lunar breccia 67016. Geochim. Cosmochim. Acta 58, 2921–2926 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Shirley, D. N. A partially molten magma ocean model. Proc. Lunar Planet. Sci Conf. XII, A519–A527 (1983)

    ADS  Google Scholar 

  11. Warren, P. H. & Wasson, J. T. The origin of KREEP. Rev. Geophys. Space. Phys. 17, 73–88 (1977)

    Article  ADS  Google Scholar 

  12. James, O. B., Lindstrom, M. M. & McGee, J. J. Lunar ferroan anorthosites 60025—petrology and chemistry of mafic lithologies. Proc. Lunar Planet. Sci. Conf. XXI, 63–87 (1991)

    ADS  Google Scholar 

  13. Boyet, M. & Carlson, R. W. A highly depleted Moon or a non-magma origin for the lunar crust? Earth Planet. Sci. Lett. 262, 505–516 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Tera, F. & Wasserburg, G. J. U-Th-Pb systematics in the lunar highland samples from the Luna 20 and Apollo 16 missions. Earth Planet. Sci. Lett. 17, 36–51 (1972)

    Article  ADS  CAS  Google Scholar 

  15. Nunes, P. D., Knight, R. J., Unruh, D. M. & Tatsumoto, M. The primitive nature of the lunar crust and the problem of initial Pb isotopic compositions of lunar rocks: a Rb-Sr and U-Th-Pb study of Apollo 16 samples. Lunar Planet. Sci. Conf. V, 559–561 (1974)

    ADS  Google Scholar 

  16. Connelly, J. N. & Bizzarro, M. Pb/Pb dating of chondrules from CV chondrites by progressive dissolution. Chem. Geol. 259, 143–151 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Tera, F. & Wasserburg, G. J. U-Th-Pb systematics of lunar rocks and inferences about lunar evolution. Proc. Lunar Sci. Conf. V, 1571–1599 (1974)

    ADS  Google Scholar 

  18. Nyquist, L. E. & Shih, C.-Yu. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2213–2234 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Edmunson, J., Borg, L. E., Nyquist, L. E. & Asmeron, Y. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: further evidence for early differentiation of the Moon. Geochim. Cosmochim. Acta 73, 514–527 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geosci. 25, 133–136 (2009)

    Article  ADS  Google Scholar 

  21. Nyquist, L. E. et al. 146Sm-142Nd formation interval for the lunar mantle. Geochim. Cosmochim. Acta 59, 2817–2837 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Rankenburg, K., Brandon, A. D. & Neal, C. R. Neodymium isotope evidence for a chondritic composition of the Moon. Science 312, 1369–1372 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Brandon, A. D. et al. Re-evaluating 142Nd/144Nd in lunar mare basalts with implications for early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73, 6421–6445 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Carlson, R. W. & Lugmair, G. W. The Sm-Nd history of KREEP. Proc. Lunar Planet. Sci Conf. IX, 689–704 (1978)

    ADS  Google Scholar 

  25. Touboul, M., Kleine, T., Bourdon, B., Palme, H. & Wieler, R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence for detrital zircons for the existance of continental crust and oceans on Earth 4.4 Gyr ago. Science 409, 175–178 (2001)

    CAS  Google Scholar 

  27. Nyquist, L. et al. Feldspathic clasts in Yamato-86032: remnants of the lunar crust with implications for its formation and impact history. Geochim. Cosmochim. Acta 70, 5990–6015 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Nyquist, L. E. et al. Lunar crustal history recorded in lunar anorthosites. Lunar Planet. Sci Conf. XXXXI, 1383 (2010)

    ADS  Google Scholar 

  29. Shih, C.-Y. et al. Age of pristine noritic clasts from lunar breccias 15445 and 15455. Geochim. Cosmochim. Acta 57, 915 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior; implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997)

    Article  ADS  CAS  Google Scholar 

  32. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Boyet, M., Carlson, R. W. & Horan, M. Old Sm-Nd ages for cumulate eucrites and redetermination of the solar system initial 146Sm/144Sm ratio. Earth Planet. Sci. Lett. 291, 172–181 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. The portion of the work performed at Lawrence Livermore National Laboratory and the Department of Terrestrial Magnetism were supported by NASA Cosmochemistry grants NNH08ZDA001N and NNX08AH65G, respectively. The Centre for Star and Planet Formation is funded by the Danish National Research Foundation and the University of Copenhagen’s programme of excellence. We appreciate comments by A. Brandon.

Author information

Authors and Affiliations

Authors

Contributions

L.E.B. identified, located and prepared the sample for analysis. J.N.C. performed Pb–Pb measurements. L.E.B., M.B. and R.W.C. completed Sm–Nd measurements. All authors contributed to interpretation of data and preparation of the manuscript.

Corresponding author

Correspondence to Lars E. Borg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-6, Supplementary Text 1-5, Supplementary Figures 1-5 with legends and additional references. (PDF 806 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, L., Connelly, J., Boyet, M. et al. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011). https://doi.org/10.1038/nature10328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10328

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing