Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collective synthesis of natural products by means of organocascade catalysis

Abstract

Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cascade catalysis in biosynthesis.
Figure 2: Collective natural product synthesis: nature-inspired application of cascade catalysis.
Figure 3: Proposed mechanism of organocascade cycles for the generation of a common tetracyclic intermediate ( 1).
Figure 4: Twelve-step enantioselective total synthesis of (−)-strychnine.
Figure 5: Ten-step enantioselective synthesis of (−)-akuammicine.
Figure 6: Enantioselective total syntheses of (+)-aspidospermidine and (+)-vincadifformine.
Figure 7: Enantioselective total syntheses of (−)-kopsinine and (−)-kopsanone.

Similar content being viewed by others

References

  1. Walji, A. & MacMillan, D. W. C. Strategies to bypass the Taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 1477–1489 (2007)

  2. Va, P., Campbell, E. L., Robertson, W. M. & Boger, D. L. Total synthesis and evaluation of a key series of C5-substituted vinblastine derivatives. J. Am. Chem. Soc. 132, 8489–8495 (2010)

    Article  CAS  Google Scholar 

  3. Huang, Y., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005)

    Article  CAS  Google Scholar 

  4. Simmons, B., Walji, A. & MacMillan, D. W. C. Cycle-specific organocascade catalysis: application to olefin hydroamination, hydro-oxidation, and amino-oxidation, and to natural product synthesis. Angew. Chem. Int. Ed. 48, 4349–4353 (2009)

    Article  CAS  Google Scholar 

  5. Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 3rd edn (Wiley, 2008)

    Google Scholar 

  6. Corey, E. J., Imai, N. & Pikul, S. Catalytic enantioselective synthesis of a key intermediate for the synthesis of prostanoids. Tetrahedr. Lett. 32, 7517–7520 (1991)

    Article  CAS  Google Scholar 

  7. Kuehne, M. E., Wang, T. & Seraphin, D. The total synthesis of (±)-mossambine. Synlett 557–558 (1995)

  8. Bandarage, U. K., Kuehne, M. E. & Glick, S. D. Total syntheses of racemic albifloranine and its anti-addictive congeners, including 18-methoxycoronaridine. Tetrahedron 55, 9405–9424 (1999)

    Article  CAS  Google Scholar 

  9. Grondal, C., Jeanty, M. & Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chem. 2, 167–178 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Bonjoch, J. & Sole, D. Synthesis of strychnine. Chem. Rev. 100, 3455–3482 (2000)

    Article  CAS  Google Scholar 

  11. Sirasani, G., Paul, T., Dougherty, W., Kassel, S. & Andrade, R. B. Concise total syntheses of (±)-strychnine and (±)-akuammicine. J. Org. Chem. 75, 3529–3532 (2010)

    Article  CAS  Google Scholar 

  12. Hudlicky, T. & Reed, J. W. The Way of Synthesis: Evolution of Design and Methods for Natural Products (Wiley-VCH, 2007)

    Google Scholar 

  13. Jones, S. B., Simmons, B. & MacMillan, D. W. C. Nine-step enantioselective total synthesis of (+)-minfiensine. J. Am. Chem. Soc. 131, 13606–13607 (2009)

    Article  CAS  Google Scholar 

  14. Thomas, P. J. & Stirling, C. J. M. Elimination and addition reactions. Part 34. The effect of activating group and medium on leaving group rank in elimination from carbanions. J. Chem. Soc. Perkin Trans. II 11, 1130–1134 (1978)

    Article  Google Scholar 

  15. Gatta, F. & Misiti, D. Selenium dioxide oxidation of tetrahydro-β-carboline derivatives. J. Heterocycl. Chem. 24, 1183–1187 (1987)

    Article  CAS  Google Scholar 

  16. Prashad, M., Lavecchia, L., Prasad, K. & Repic, O. A convenient synthesis of 3-substituted 1H-indoles. Synth. Commun. 25, 95–100 (1995)

    Article  CAS  Google Scholar 

  17. Oestreich, M. Ed. The Mizoroki–Heck Reaction (Wiley, 2009)

    Book  Google Scholar 

  18. Anet, F. A. L. & Robinson, R. Conversion of the Wieland–Gumlich aldehyde into strychnine. Chem. Ind. 245. (1953)

  19. Knight, S. D. & Overman, L. E. Enantioselective total synthesis of (−)-strychnine. J. Am. Chem. Soc. 115, 9293–9294 (1993)

    Article  CAS  Google Scholar 

  20. Mori, M., Nakanishi, M., Kajishima, D. & Sato, Y. A novel and general synthetic pathway to Strychnos indole alkaloids: total syntheses of (−)-tubifoline, (−)-dehydrotubifoline, and (−)-strychnine using palladium-catalyzed asymmetric allylic substitution. J. Am. Chem. Soc. 125, 9801–9807 (2003)

    Article  CAS  Google Scholar 

  21. Sole, D. et al. Total synthesis of (−)-strychnine via the Wieland–Gumlich aldehyde. Angew. Chem. Int. Ed. 38, 395–397 (1999)

    Article  CAS  Google Scholar 

  22. Martin, D. B. & Vanderwal, C. D. A synthesis of strychnine by a longest linear sequence of six steps. Chem. Sci. 2, 649–651 (2011)

    Article  CAS  Google Scholar 

  23. Sole, D., Diaba, F. & Bonjoch, J. Nitrogen heterocycles by palladium-catalyzed cyclization of amino-tethered vinyl halides and ketone enolates. J. Org. Chem. 68, 5746–5749 (2003)

    Article  CAS  Google Scholar 

  24. Jeffery, T. On the efficiency of tetraalkylammonium salts in Heck type reactions. Tetrahedron 52, 10113–10130 (1996)

    Article  CAS  Google Scholar 

  25. Marino, J. P., Rubio, M. B., Cao, G. F. & de Dios, A. Total synthesis of (+)-aspidospermidine: a new strategy for the enantiospecific synthesis of Aspidosperma alkaloids. J. Am. Chem. Soc. 124, 13398–13399 (2002)

    Article  CAS  Google Scholar 

  26. Kobayashi, S., Peng, G. & Fukuyama, T. Efficient total syntheses of (±)-vincadifformine and (−)-tabersonine. Tetrahedr. Lett. 40, 1519–1522 (1999)

    Article  CAS  Google Scholar 

  27. Hajicek, J. A review on recent developments in syntheses of the post-secodine indole alkaloids. Part I: The primary alkaloid types. Collect. Czech. Chem. Commun. 69, 1681–1767 (2004)

    Article  CAS  Google Scholar 

  28. Cho, H.-K., Tam, N. T. & Cho, C. G. Total synthesis of (±) aspidospermidine starting from 3-ethyl-5-bromo-2-pyrone. Bull. Korean Chem. Soc. 31, 3382–3384 (2010)

    Article  CAS  Google Scholar 

  29. Gnecco, D. et al. Synthesis of an aspidosperma alkaloid precursor: synthesis of (+)-aspidospermidine. Arkivoc 2003 (xi),. 185–192 (2003)

    Article  Google Scholar 

  30. Kozmin, S. A., Iwama, T., Huang, Y. & Rawal, V. H. An efficient approach to Aspidosperma alkaloids via [4 + 2] cycloadditions of aminosiloxydienes: Stereocontrolled total synthesis of (±)-tabersonine. Gram-scale catalytic asymmetric syntheses of (+)-tabersonine and (+)-16-methoxytabersonine. Asymmetric syntheses of (+)-aspidospermidine and (−)-quebrachamine. J. Am. Chem. Soc. 124, 4628–4641 (2002)

    Article  CAS  Google Scholar 

  31. Kuehne, M. et al. Application of ferrocenylalkyl chiral auxiliaries to syntheses of indolenine alkaloids: enantioselective syntheses of vincadifformine, ψ- and 20-epi-ψ-vincadifformines, tabersonine, ibophyllidine, and mossambine. J. Org. Chem. 63, 2172–2183 (1998)

    Article  CAS  Google Scholar 

  32. Magnus, P. & Brown, P. Total synthesis of (−)-kopsinilam, (−)-kopsinine, and the bis-indole alkaloids (−)-norpleiomutine and (−)-pleiomutine. J. Chem. Soc. Chem. Commun. 184–186 (1985)

  33. Kuehne, M. E. & Seaton, P. J. Studies in biomimetic alkaloid syntheses. 13. Total syntheses of racemic aspidofractine, pleiocarpine, pleiocarpinine, kopsinine, N-methylkopsanone, and kopsanone. J. Org. Chem. 50, 4790–4796 (1985)

    Article  CAS  Google Scholar 

  34. Wenkert, E. & Pestchanker, M. J. A formal total synthesis of kopsinine. J. Org. Chem. 53, 4875–4877 (1988)

    Article  CAS  Google Scholar 

  35. Ogawa, M., Kitagawa, Y. & Natsume, M. A high-yield cyclization reaction for the framework of aspidosperma alkaloids synthesis of (±)-kopsinine and its related alkaloids. Tetrahedr. Lett. 28, 3985–3986 (1987)

    Article  CAS  Google Scholar 

  36. Gallagher, T. & Magnus, P. Synthesis of (±)-kopsanone and (±)-10,22-dioxokopsane, heptacyclic indole alkaloids. J. Am. Chem. Soc. 105, 2086–2087 (1983)

    Article  CAS  Google Scholar 

  37. Kump, C., Dugan, J. J. & Schmid, H. Ringschlussreaktionen an Pleiocarpa-Alkaloiden. Helv. Chim. Acta 49, 1237–1243 (1966)

    Article  CAS  Google Scholar 

  38. Magnus, P., Payne, A. H. & Hobson, L. Synthesis of the kopsia alkaloids (±)-11,12-demethoxylahadinine B, (±)-kopsidasine and (±)-kopsidasine-N-oxide. Tetrahedr. Lett. 41, 2077–2081 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by NIHGMS (R01 GM078201-05) and gifts from Merck, Bristol-Myers Squibb and Abbott. S.B.J. and B.S. thank Bristol-Myers Squibb and Merck, respectively, for graduate fellowships.

Author information

Authors and Affiliations

Authors

Contributions

S.B.J., B.S. and A.M. participated in the performance and analysis of the experiments. S.B.J., B.S., A.M. and D.W.C.M. designed the experiments. S.B.J. and D.W.C.M. wrote the paper.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and additional references. (PDF 10384 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S., Simmons, B., Mastracchio, A. et al. Collective synthesis of natural products by means of organocascade catalysis. Nature 475, 183–188 (2011). https://doi.org/10.1038/nature10232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10232

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing