Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli

Abstract

Gram-negative bacteria, such as Escherichia coli, expel toxic chemicals through tripartite efflux pumps that span both the inner and outer membrane. The three parts are an inner membrane, substrate-binding transporter; a membrane fusion protein; and an outer-membrane-anchored channel. The fusion protein connects the transporter to the channel within the periplasmic space. A crystallographic model of this tripartite efflux complex has been unavailable because co-crystallization of the various components of the system has proven to be extremely difficult. We previously described the crystal structures of both the inner membrane transporter CusA1 and the membrane fusion protein CusB2 of the CusCBA efflux system3,4 of E. coli. Here we report the co-crystal structure of the CusBA efflux complex, showing that the transporter (or pump) CusA, which is present as a trimer, interacts with six CusB protomers and that the periplasmic domain of CusA is involved in these interactions. The six CusB molecules seem to form a continuous channel. The affinity of the CusA and CusB interaction was found to be in the micromolar range. Finally, we have predicted a three-dimensional structure for the trimeric CusC outer membrane channel and developed a model of the tripartite efflux assemblage. This CusC3–CusB6–CusA3 model shows a 750-kilodalton efflux complex that spans the entire bacterial cell envelope and exports Cu i and Ag i ions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the CusBA efflux complex.
Figure 2: Structure of the hexameric CusB channel.
Figure 3: CusA–CusB interactions.
Figure 4: CusB–CusB interactions.
Figure 5: Electrostatic surface potential of CusB.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the CusBA structure have been deposited with the Protein Data Bank (http://www.pdb.org) under accession code 3NE5.

References

  1. Long, F. et al. Crystal structures of the CusA heavy-metal efflux pump suggest methionine-mediated metal transport mechanism. Nature 467, 484–488 (2010)

    Article  CAS  ADS  Google Scholar 

  2. Su, C.-C. et al. Crystal structure of the membrane fusion protein CusB from Escherichia coli. J. Mol. Biol. 393, 342–355 (2009)

    Article  CAS  Google Scholar 

  3. Franke, S., Grass, G. & Nies, D. H. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147, 965–972 (2001)

    Article  CAS  Google Scholar 

  4. Franke, S., Grass, G., Rensing, C. & Nies, D. H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185, 3804–3812 (2003)

    Article  Google Scholar 

  5. Tseng, T. T. et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1, 107–125 (1999)

    CAS  PubMed  Google Scholar 

  6. Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313–339 (2003)

    Article  CAS  Google Scholar 

  7. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)

    Article  CAS  ADS  Google Scholar 

  8. Yu, E. W., McDermott, G., Zgruskaya, H. I., Nikaido, H. & Koshland, D. E., Jr Structural basis of multiple drug binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003)

    Article  CAS  ADS  Google Scholar 

  9. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006)

    Article  CAS  ADS  Google Scholar 

  10. Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Sennhauser, G., Amstutz, P., Briand, C., Storchengegger, O. & Grütter, M. G. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7 (2007)

    Article  Google Scholar 

  12. Yu, E. W., Aires, J. R., McDermott, G. & Nikaido, H. A periplasmic-drug binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J. Bacteriol. 187, 6804–6815 (2005)

    Article  CAS  Google Scholar 

  13. Sennhauser, G., Bukowska, M. A., Briand, C. & Grütter, M. G. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J. Mol. Biol. 389, 134–145 (2009)

    Article  CAS  Google Scholar 

  14. Su, C.-C. et al. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J. Bacteriol. 188, 7290–7296 (2006)

    Article  CAS  Google Scholar 

  15. Higgins, M. K., Bokma, E., Koronakis, E., Hughes, C. & Koronakis, V. Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl Acad. Sci. USA 101, 9994–9999 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Akama, H. et al. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J. Biol. Chem. 279, 25939–25942 (2004)

    Article  CAS  Google Scholar 

  17. Mikolosko, J., Bobyk, K., Zgurskaya, H. I. & Ghosh, P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577–587 (2006)

    Article  CAS  Google Scholar 

  18. Symmons, M., Bokma, E., Koronakis, E., Hughes, C. & Koronakis, V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc. Natl Acad. Sci. USA 106, 7173–7178 (2009)

    Article  CAS  ADS  Google Scholar 

  19. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)

    Article  CAS  ADS  Google Scholar 

  20. Akama, H. et al. Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa. J. Biol. Chem. 279, 52816–52819 (2004)

    Article  CAS  Google Scholar 

  21. Xue, Y. et al. Cu i recognition via cation-π and methionine interactions in CusF. Nature Chem. Biol. 4, 107–109 (2008)

    Article  CAS  Google Scholar 

  22. Loftin, I. R., Franke, S., Blackburn, N. J. & McEvoy, M. M. Unusual Cu i/ Ag i coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Protein Sci. 16, 2287–2293 (2007)

    Article  CAS  Google Scholar 

  23. Bagai, I., Liu, W., Rensing, C., Blackburn, N. & McEvoy, M. M. Substrate-linked conformational change in the periplasmic component of Cu i/ Ag i efflux system. J. Biol. Chem. 282, 35695–35702 (2007)

    Article  CAS  Google Scholar 

  24. Gerken, H. & Misra, R. Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli. Mol. Microbiol. 54, 620–631 (2004)

    Article  CAS  Google Scholar 

  25. Bagai, I., Rensing, C., Blackburn, N. J. & McEvoy, M. M. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47, 11408–11414 (2008)

    Article  CAS  Google Scholar 

  26. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  27. Terwilliger, T. C. Maximum-likelihood density modification using pattern recognition of structural motifs. Acta Crystallogr. D 57, 1755–1762 (2001)

    Article  CAS  Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  29. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  30. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  31. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5, 725–738 (2010)

    Article  CAS  Google Scholar 

  32. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  33. Feller, S. E. & MacKerell, A. D., Jr An improved empirical potential energy for molecular simulations of phospholipids. J. Phys. Chem. B 104, 7510–7515 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institutes of Health grants R01GM074027 (E.W.Y.), R01GM086431 (E.W.Y.), R01GM081680 (R.L.J.) and R01GM072014 (R.L.J.). This work is based on research conducted at the Northeastern Collaborative Access Team beamlines of the Advanced Photon Source, supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

C.-C.S., F.L. and E.W.Y. designed the research. C.-C.S. and F.L. performed experiments. M.T.Z. and R.L.J. performed the docking. C.-C.S., F.L., K.R.R. and E.W.Y. performed the model building and refinement. C.-C.S., F.L., R.L.J. and E.W.Y. wrote the paper.

Corresponding author

Correspondence to Edward W. Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References, Supplementary Table 1 and Supplementary Figures 1-4 with legends. (PDF 3220 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, CC., Long, F., Zimmermann, M. et al. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470, 558–562 (2011). https://doi.org/10.1038/nature09743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09743

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing