Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-myristoyltransferase inhibitors as new leads to treat sleeping sickness

Abstract

African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target—T. brucei N-myristoyltransferase—leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of NMT lead series inhibitors.
Figure 2: TbNMT inhibitor cures acute trypanosomiasis in vivo.
Figure 3: TbNMT inhibitors have rapid trypanocidal effects in vitro and in vivo.
Figure 4: Pyrazole sulphonamide series acts ‘on target’ in the trypanosome.
Figure 5: Characterization of pyrazole sulphonamide interactions with NMT.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the crystal structures have been deposited with the Protein Data Bank under accession codes 3H5Z and 2WSA for LmNMT with bound myristoyl CoA and with bound DDD85646, respectively.

References

  1. Farazi, T. A., Waksman, G. & Gordon, J. I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 276, 39501–39504 (2001)

    Article  CAS  Google Scholar 

  2. Resh, M. D. Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chem. Biol. 2, 584–590 (2006)

    Article  CAS  Google Scholar 

  3. Maurer-Stroh, S., Eisenhaber, B. & Eisenhaber, F. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541–557 (2002)

    Article  CAS  Google Scholar 

  4. Bhatnagar, R. S., Futterer, K., Waksman, G. & Gordon, J. I. The structure of myristoyl-CoA: protein N-myristoyltransferase. Biochim. Biophys. Acta 1441, 162–172 (1999)

    Article  CAS  Google Scholar 

  5. Price, H. P. et al. Myristoyl-CoA: protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J. Biol. Chem. 278, 7206–7214 (2003)

    Article  CAS  Google Scholar 

  6. Mills, E., Price, H. P., Johner, A., Emerson, J. E. & Smith, D. F. Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania . Mol. Biochem. Parasitol. 152, 22–34 (2007)

    Article  CAS  Google Scholar 

  7. Price, H. P., Stark, M. & Smith, D. F. Trypanosoma brucei ARF1 plays a central role in endocytosis and Golgi-lysosome trafficking. Mol. Biol. Cell 18, 864–873 (2007)

    Article  CAS  Google Scholar 

  8. Price, H. P., Panethymitaki, C., Goulding, D. & Smith, D. F. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J. Cell Sci. 118, 831–841 (2005)

    Article  CAS  Google Scholar 

  9. Hertz-Fowler, C., Ersfeld, K. & Gull, K. CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei . Mol. Biochem. Parasitol. 116, 25–34 (2001)

    Article  CAS  Google Scholar 

  10. Denny, P. W., Gokool, S., Russell, D. G., Field, M. C. & Smith, D. F. Acylation-dependent protein export in Leishmania . J. Biol. Chem. 275, 11017–11025 (2000)

    Article  CAS  Google Scholar 

  11. Wingard, J. N. et al. Structural insights into membrane targeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in Trypanosoma cruzi . J. Biol. Chem. 283, 23388–23396 (2008)

    Article  CAS  Google Scholar 

  12. Selvakumar, P. et al. Potential role of N-myristoyltransferase in cancer. Prog. Lipid Res. 46, 1–36 (2007)

    Article  CAS  Google Scholar 

  13. Georgopapadakou, N. H. Antifungals targeted to protein modification: focus on protein N-myristoyltransferase. Expert Opin. Investig. Drugs 11, 1117–1125 (2002)

    Article  CAS  Google Scholar 

  14. Hill, B. T. & Skowronski, J. Human N-myristoyltransferases form stable complexes with lentiviral Nef and other viral and cellular substrate proteins. J. Virol. 79, 1133–1141 (2005)

    Article  CAS  Google Scholar 

  15. Bowyer, P. W. et al. N-myristoyltransferase: a prospective drug target for protozoan parasites. ChemMedChem 3, 402–408 (2008)

    Article  CAS  Google Scholar 

  16. Sheng, C. et al. Homology modeling and molecular dynamics simulation of N-myristoyltransferase from protozoan parasites: active site characterization and insights into rational inhibitor design. J. Comput. Aided Mol. Des. 23, 375–389 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Giang, D. G. & Cravatt, B. F. A second mammalian N-myristoyltransferase. J. Biol. Chem. 273, 6595–6598 (1998)

    Article  CAS  Google Scholar 

  18. Panethymitaki, C. et al. Characterization and selective inhibition of myristoyl-CoA: protein N-myristoyltransferase from Trypanosoma brucei and Leishmania major . Biochem. J. 396, 277–285 (2006)

    Article  CAS  Google Scholar 

  19. Brenk, R. et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3, 435–444 (2008)

    Article  CAS  Google Scholar 

  20. Doering, T. L. et al. An analog of myristic acid with selective toxicity for African trypanosomes. Science 252, 1851–1854 (1991)

    Article  ADS  CAS  Google Scholar 

  21. Allen, C. L., Goulding, D. & Field, M. C. Clathrin-mediated endocytosis is essential in Trypanosoma brucei . EMBO J. 22, 4991–5002 (2003)

    Article  CAS  Google Scholar 

  22. Hall, B., Allen, C. L., Goulding, D. & Field, M. C. Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis. Mol. Biochem. Parasitol. 138, 67–77 (2004)

    Article  CAS  Google Scholar 

  23. Ferguson, M. A. J. & Cross, G. A. M. Myristylation of the membrane form of a Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 259, 3011–3015 (1984)

    CAS  PubMed  Google Scholar 

  24. Ferguson, M. A. J., Low, M. G. & Cross, G. A. M. Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 260, 4547–4555 (1985)

    Google Scholar 

  25. Armah, D. A. & Mensa-Wilmot, K. S-myristoylation of a glycosylphosphatidylinositol-specific phospholipase C in Trypanosoma brucei . J. Biol. Chem. 274, 5931–5938 (1999)

    Article  CAS  Google Scholar 

  26. Farazi, T. A., Waksman, G. & Gordon, J. I. Structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoylCoA and peptide provide insights about substrate recognition and catalysis. Biochemistry 40, 6335–6343 (2001)

    Article  CAS  Google Scholar 

  27. Price, H. P., Guther, M. L., Ferguson, M. A. & Smith, D. F. Myristoyl-CoA:protein N-myristoyltransferase depletion in trypanosomes causes avirulence and endocytic defects. Mol. Biochem. Parasitol. 169, 55–58 (2010)

    Article  CAS  Google Scholar 

  28. Overath, P. & Engstler, M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol. Microbiol. 53, 735–744 (2004)

    Article  CAS  Google Scholar 

  29. Engstler, M. et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131, 505–515 (2007)

    Article  CAS  Google Scholar 

  30. Patterson, S. et al. Synthesis and evaluation of 1-(1-(benzo[b]thiophen-2-yl)cyclohexyl)piperidine (BTCP) analogues as inhibitors of trypanothione reductase. ChemMedChem 4, 1341–1353 (2009)

    Article  CAS  Google Scholar 

  31. Thuita, J. K. et al. Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis. Acta Trop. 108, 6–10 (2008)

    Article  CAS  Google Scholar 

  32. Sienkiewicz, N., Jaroslawski, S., Wyllie, S. & Fairlamb, A. H. Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Mol. Microbiol. 69, 520–533 (2008)

    Article  CAS  Google Scholar 

  33. Bowyer, P. W. et al. Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum . Biochem. J. 408, 173–180 (2007)

    Article  CAS  Google Scholar 

  34. Räz, B., Iten, M., Grether-Bühler, M., Kaminsky, R. & Brun, R. The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b.rhodesiense and T.b.gambiense) in vitro . Acta Trop. 68, 139–147 (1997)

    Article  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  36. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  37. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  39. Schüttelkopf, A. W. & van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust (WT077705, WT083481, WT077503 and WT085622), Scottish Funding Council (HR04013) and by the Translational Biology Theme of SULSA. We thank the European Regional Development Fund and the Wolfson Foundation for grants that provided relevant infrastructure for this work. The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation and Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck, the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust. We would like to thank all members of the Drug Discovery Unit for their technical assistance in this study, particularly B. Rao, I. Collie and D. James.

Author Contributions The project management team responsible for experimental design and coordination of research activities comprised S.B., R.B., A.H.F., M.A.J.F., J.A.F., I.H.G., K.D.R., D.M.F.vA., P.G.W. and D.F.S. J.A.B., M.H. and A.J.W. optimized expression and produced the active TbNMT used for screening in the Drug Discovery Unit. Biological studies were carried out by S.P.M., O.S., L.S.T., M.L.S.G., I.H. and H.P.P.; chemical syntheses by L.A.T.C. and S.B.; structural biology and modelling by D.A.R., O.G.R., C.P.M., R.H. and W.Q.; and pharmacological studies by L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Wyatt.

Ethics declarations

Competing interests

P.G.W. and S.B. are inventors on the patent (PCT/GB2009/002084).

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends, Supplementary Methods and Supplementary Table 1. (PDF 1132 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frearson, J., Brand, S., McElroy, S. et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 464, 728–732 (2010). https://doi.org/10.1038/nature08893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08893

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing