Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lessons on longevity from budding yeast

An Erratum to this article was published on 01 April 2010

This article has been updated

Abstract

The past decade has seen fundamental advances in our understanding of the ageing process and raised optimism that interventions to slow ageing may be on the horizon. Studies of budding yeast have made immense contributions to this progress. Yeast longevity factors have now been shown to modulate ageing in invertebrate and mammalian models, and studies of yeast have resulted in some of the best candidates for anti-ageing drugs currently in development. The first interventions to slow human ageing may spring from the humble yeast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Damage accumulation in yeast ageing.
Figure 2: Carbon metabolism and yeast ageing.
Figure 3: Modulation of yeast ageing by TOR and Sir2.

Similar content being viewed by others

Change history

  • 01 April 2010

    Nature 464, 513–519 (2010) Figure 3 of this Review contained a minor error. The correct figure is shown below.

References

  1. Steinkraus, K. A., Kaeberlein, M. & Kennedy, B. K. Replicative aging in yeast: the means to the end. Annu. Rev. Cell Dev. Biol. 24, 29–54 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fabrizio, P. & Longo, V. D. The chronological life span of Saccharomyces cerevisiae . Methods Mol. Biol. 371, 89–95 (2007).

    CAS  PubMed  Google Scholar 

  3. Kennedy, B. K., Austriaco, N. R. Jr & Guarente, L. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127, 1985–1993 (1994).

    CAS  PubMed  Google Scholar 

  4. Egilmez, N. K. & Jazwinski, S. M. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae . J. Bacteriol. 171, 37–42 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashrafi, K., Sinclair, D., Gordon, J. I. & Guarente, L. Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 96, 9100–9105 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burtner, C. R., Murakami, C. J., Kennedy, B. K. & Kaeberlein, M. A molecular mechanism of chronological aging in yeast. Cell Cycle 8, 1256–1270 (2009). In this paper, acetic acid toxicity was shown to be the primary cause of chronological senescence under standard growth conditions.

    CAS  PubMed  Google Scholar 

  7. Burhans, W. C. & Weinberger, M. Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? Cell Cycle 8, 2300–2302 (2009).

    CAS  PubMed  Google Scholar 

  8. Rockenfeller, P. & Madeo, F. Apoptotic death of ageing yeast. Exp. Gerontol. 43, 876–881 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fabrizio, P. et al. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35–46 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Herker, E. et al. Chronological aging leads to apoptosis in yeast. J. Cell Biol. 164, 501–507 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabrizio, P. & Longo, V. D. Chronological aging-induced apoptosis in yeast. Biochim. Biophys. Acta 1783, 1280–1285 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fabrizio, P. et al. Sir2 blocks extreme life-span extension. Cell 123, 655–667 (2005).

    CAS  PubMed  Google Scholar 

  13. Powers, R. W. III, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).

    ADS  CAS  PubMed  Google Scholar 

  16. Kaeberlein, M. & Kapahi, P. Aging is RSKy business. Science 326, 55–56 (2009).

    ADS  CAS  PubMed  Google Scholar 

  17. Ganley, A. R., Ide, S., Saka, K. & Kobayashi, T. The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Mol. Cell 35, 683–693 (2009).

    CAS  PubMed  Google Scholar 

  18. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008). This study describes the existence of a septin-dependent diffusion barrier required for asymmetrical inheritance of nuclear pores and extrachromosomal rDNA circles by the mother cell during division.

    ADS  CAS  PubMed  Google Scholar 

  19. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003). This study showed that oxidatively damaged cytoplasmic proteins are asymmetrically segregated to the mother cell during ageing in a Sir2-dependent manner.

    ADS  CAS  PubMed  Google Scholar 

  20. Erjavec, N. & Nystrom, T. Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 104, 10877–10881 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai, C. Y., Jaruga, E., Borghouts, C. & Jazwinski, S. M. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae . Genetics 162, 73–87 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirchman, P. A., Kim, S., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae . Genetics 152, 179–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Veatch, J. R., McMurray, M. A., Nelson, Z. W. & Gottschling, D. E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247–1258 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. McMurray, M. A. & Gottschling, D. E. An age-induced switch to a hyper-recombinational state. Science 301, 1908–1911 (2003).

    ADS  CAS  PubMed  Google Scholar 

  25. Kennedy, B. K., Steffen, K. K. & Kaeberlein, M. Ruminations on dietary restriction and aging. Cell. Mol. Life Sci. 64, 1323–1328 (2007).

    CAS  PubMed  Google Scholar 

  26. Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, e296 (2004).

    PubMed  PubMed Central  Google Scholar 

  27. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae . Science 289, 2126–2128 (2000).

    ADS  CAS  PubMed  Google Scholar 

  28. Murakami, C. J., Burtner, C. R., Kennedy, B. K. & Kaeberlein, M. A method for high-throughput quantitative analysis of yeast chronological life span. J. Gerontol. A 63, 113–121 (2008).

    Google Scholar 

  29. Smith, D. L. Jr, McClure, J. M., Matecic, M. & Smith, J. S. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the sirtuins. Aging Cell 6, 649–662 (2007).

    CAS  PubMed  Google Scholar 

  30. Jiang, J. C., Jaruga, E., Repnevskaya, M. V. & Jazwinski, S. M. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J. 14, 2135–2137 (2000).

    CAS  PubMed  Google Scholar 

  31. Alvers, A. L. et al. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae . Aging Cell 8, 353–369 (2009).

    CAS  PubMed  Google Scholar 

  32. Finkel, T., Deng, C. X. & Mostoslavsky, R. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kennedy, B. K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae . Cell 89, 381–391 (1997).

    CAS  PubMed  Google Scholar 

  35. Kennedy, B. K. & Kaeberlein, M. Hot topics in aging research: protein translation, 2009. Aging Cell 8, 617–623 (2009).

    CAS  PubMed  Google Scholar 

  36. Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009). In this paper, a specific chromatin modification, H4K16 acetylation, was shown to be an important Sir2-regulated function in determining RLS.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nature Med. 12, 1133–1138 (2006).

    CAS  PubMed  Google Scholar 

  38. Shawi, M. & Autexier, C. Telomerase, senescence and ageing. Mech. Ageing Dev. 129, 3–10 (2008).

    CAS  PubMed  Google Scholar 

  39. Austriaco, N. R. Jr & Guarente, L. P. Changes of telomere length cause reciprocal changes in the lifespan of mother cells in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 94, 9768–9772 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guarente, L. Calorie restriction and SIR2 genes — towards a mechanism. Mech. Ageing Dev. 126, 923–928 (2005).

    CAS  PubMed  Google Scholar 

  41. Kaeberlein, M. & Powers, R. W. III . Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 6, 128–140 (2007).

    CAS  PubMed  Google Scholar 

  42. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  43. Stanfel, M. N., Shamieh, L. S., Kaeberlein, M. & Kennedy, B. K. The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067–1074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith, E. D. et al. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 18, 564–570 (2008). This study demonstrated that genetic control of longevity has been conserved between yeast and nematodes and identified 25 homologue pairs that modulate longevity in both species.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    ADS  CAS  PubMed  Google Scholar 

  46. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan. Science 326, 140–144 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chiocchetti, A. et al. Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp. Gerontol. 42, 275–286 (2007).

    CAS  PubMed  Google Scholar 

  48. Managbanag, J. R. et al. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS ONE 3, e3802 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steffen, K. K. et al. Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133, 292–302 (2008). This study defined the function of the large ribosomal subunit as a key determinant of yeast ageing and identified the transcription factor Gcn4 as a translationally regulated longevity factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila . Cell 139, 149–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, X., Zuo, X., Kucejova, B. & Chen, X. J. Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nature Cell Biol. 10, 1090–1097 (2008).

    ADS  CAS  PubMed  Google Scholar 

  52. Riesen, M. & Morgan, A. Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell 8, 624–632.

  53. Medvedik, O., Lamming, D. W., Kim, K. D. & Sinclair, D. A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae . PLoS Biol. 5, e261 (2007).

    PubMed  PubMed Central  Google Scholar 

  54. Beck, T. & Hall, M. N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692 (1999).

    ADS  CAS  PubMed  Google Scholar 

  55. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae . Nature 423, 181–185 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smith, D. L. et al. Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell 8, 633–642 (2009).

    CAS  PubMed  Google Scholar 

  57. Bonawitz, N. D., Chatenay- Lapointe, M., Pan, Y. & Shadel, G. S. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell. Metab. 5, 265–277 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alvers, A. L. et al. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5, 847–849 (2009).

    CAS  PubMed  Google Scholar 

  59. Wei, M. et al. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet. 5, e1000467 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Roux, A. E. et al. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet. 5, e1000408 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Roux, A. E., Quissac, A., Chartrand, P., Ferbeyre, G. & Rokeach, L. A. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5, 345–357 (2006).

    CAS  PubMed  Google Scholar 

  62. Barker, M. G. & Walmsley, R. M. Replicative ageing in the fission yeast Schizosaccharomyces pombe . Yeast 15, 1511–1518 (1999).

    CAS  PubMed  Google Scholar 

  63. Erjavec, N., Cvijovic, M., Klipp, E. & Nystrom, T. Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc. Natl Acad. Sci. USA 105, 18764–18769 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oliveira, G. A., Tahara, E. B., Gombert, A. K., Barros, M. H. & Kowaltowski, A. J. Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span. J. Bioenerg. Biomembr. 40, 381–388 (2008).

    CAS  PubMed  Google Scholar 

  65. Kaeberlein, M. Resveratrol and rapamycin: are they anti-aging drugs? BioEssays 32, 96–99 (2010).

    CAS  PubMed  Google Scholar 

  66. Lorenz, D. R., Cantor, C. R. & Collins, J. J. A network biology approach to aging in yeast. Proc. Natl Acad. Sci. USA 106, 1145–1150 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lindstrom, D. L. & Gottschling, D. E. The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae . Genetics 183, 413–422 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Qin, H., Lu, M. & Goldfarb, D. S. Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae . PLoS ONE 3, e2670 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  69. Lamming, D. W. et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861–1864 (2005).

    ADS  CAS  PubMed  Google Scholar 

  70. Kaeberlein, M. et al. Comment on 'HST2 mediates SIR2-independent life-span extension by calorie restriction'. Science 312, 1312 (2006).

    CAS  PubMed  Google Scholar 

  71. Tsuchiya, M. et al. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5, 505–514 (2006).

    CAS  PubMed  Google Scholar 

  72. Lu, S. P. & Lin, S. J. Regulation of yeast sirtuins by NAD+ metabolism and calorie restriction. Biochim. Biophys. Acta doi:10.1016/j.bbapap.2009.09.030 (in the press).

  73. Kaeberlein, M. et al. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet. 1, e69 (2005).

    PubMed  PubMed Central  Google Scholar 

  74. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    ADS  CAS  PubMed  Google Scholar 

  75. Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    ADS  CAS  PubMed  Google Scholar 

  76. Valenzano, D. R. et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 16, 296–300 (2006).

    CAS  PubMed  Google Scholar 

  77. Borra, M. T., Smith, B. C. & Denu, J. M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187–17195 (2005).

    CAS  PubMed  Google Scholar 

  78. Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038–17045 (2005).

    CAS  PubMed  Google Scholar 

  79. Bass, T. M., Weinkove, D., Houthoofd, K., Gems, D. & Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans . Mech. Ageing Dev. 128, 546–552 (2007).

    CAS  PubMed  Google Scholar 

  80. Beher, D. et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 74, 619–624 (2009).

    CAS  PubMed  Google Scholar 

  81. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    CAS  PubMed  Google Scholar 

  83. Barger, J. L. et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3, e2264 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  84. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell. Metab. 8, 157–168 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaeberlein, M. Spermidine surprise for a long life. Nature Cell Biol. 11, 1277–1278 (2009).

    CAS  PubMed  Google Scholar 

  86. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nature Cell Biol. 11, 1277–1278 (2009). This study identified spermidine as a compound that increases lifespan in yeast, nematodes and flies.

    Google Scholar 

Download references

Acknowledgements

Studies related to this topic in the Kaeberlein laboratory have been supported by US National Institutes of Health (NIH) grant R21AG031965, a Pilot Project grant from the University of Washington Nathan Shock Center of Excellence in the Basic Biology of Aging (NIH grant P30AG013280) and a New Scholar in Aging Award from the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

M.K. has been issued a patent issued for the identification of ageing genes through large-scale analysis (US patent 7,622,271).

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. The author declares competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/nature. Correspondence should be addressed to the author (kaeber@u.washington.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaeberlein, M. Lessons on longevity from budding yeast. Nature 464, 513–519 (2010). https://doi.org/10.1038/nature08981

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08981

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing