Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and hydration of membranes embedded with voltage-sensing domains

Abstract

Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S1–S4 voltage-sensing domains and their biophysical properties in lipid bilayers.
Figure 2: Scattering-length density profiles for bilayers containing S1–S4 voltage-sensing domains.
Figure 3: Deuteration of S1–S4 voltage-sensing domains and distribution of the protein in lipid membranes.
Figure 4: Interaction of water and S1–S4 voltage-sensing domains within lipid membranes.
Figure 5: Effects of the voltage-sensing domain on a lipid bilayer as revealed by molecular dynamics simulation.

Similar content being viewed by others

References

  1. Swartz, K. J. Sensing voltage across lipid membranes. Nature 456, 891–897 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lee, S. Y., Letts, J. A. & MacKinnon, R. Functional reconstitution of purified human Hv1 H+ channels. J. Mol. Biol. 387, 1055–1060 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Alabi, A. A., Bahamonde, M. I., Jung, H. J., Kim, J. I. & Swartz, K. J. Portability of paddle motif function and pharmacology in voltage sensors. Nature 450, 370–375 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sands, Z. A. & Sansom, M. S. How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain. Structure 15, 235–244 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakrapani, S., Cuello, L. G., Cortes, D. M. & Perozo, E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 16, 398–409 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt, D., Jiang, Q. X. & MacKinnon, R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444, 775–779 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ramu, Y., Xu, Y. & Lu, Z. Enzymatic activation of voltage-gated potassium channels. Nature 442, 696–699 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Milescu, M. et al. Interaction between lipids and voltage sensor paddles detected with tarantula toxins. Nature Struct. Mol. Biol. 16, 1080–1085 (2009)

    Article  CAS  Google Scholar 

  17. Xu, Y., Ramu, Y. & Lu, Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451, 826–829 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37, 85–97 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chanda, B., Asamoah, O. K., Blunck, R., Roux, B. & Bezanilla, F. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436, 852–856 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ahern, C. A. & Horn, R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Starace, D. M. & Bezanilla, F. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J. Gen. Physiol. 117, 469–490 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neale, E. J., Rong, H., Cockcroft, C. J. & Sivaprasadarao, A. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel. J. Biol. Chem. 282, 37597–37604 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Tombola, F., Pathak, M. M. & Isacoff, E. Y. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Freites, J. A., Tobias, D. J. & White, S. H. A voltage-sensor water pore. Biophys. J. 91, L90–L92 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jogini, V. & Roux, B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys. J. 93, 3070–3082 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Treptow, W. & Tarek, M. Environment of the gating charges in the Kv1.2 Shaker potassium channel. Biophys. J. 90, L64–L66 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Worcester, D. L. & Franks, N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutrol diffraction. J. Mol. Biol. 100, 359–378 (1976)

    Article  CAS  PubMed  Google Scholar 

  31. Blasie, J. K., Schoenborn, B. P. & Zaccai, G. Direct methods for the analysis of lamellar neutron diffraction from oriented multilayers: a difference Patterson deconvolution approach. Brookhaven Symp. Biol. 27, 58–67 (1976)

    Google Scholar 

  32. Jacobs, R. E. & White, S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28, 3421–3437 (1989)

    Article  CAS  PubMed  Google Scholar 

  33. Wiener, M. C. & White, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61, 434–447 (1992)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vamvouka, M., Cieslak, J., Van Eps, N., Hubbell, W. & Gross, A. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron-electron resonance spectroscopy. Protein Sci. 17, 506–517 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, A. G. Measurement of lipid-protein interactions in reconstituted membrane vesicles using fluorescence spectroscopy. Methods Mol. Biol. 27, 101–107 (1994)

    CAS  PubMed  Google Scholar 

  36. McIntosh, T. J. & Holloway, P. W. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes. Biochemistry 26, 1783–1788 (1987)

    Article  CAS  PubMed  Google Scholar 

  37. Dura, J. A. et al. AND/R: advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences. Rev. Sci. Instrum. 77, 074301 (2006)

    Article  ADS  CAS  Google Scholar 

  38. Grossfield, A., Pitman, M. C., Feller, S. E., Soubias, O. & Gawrisch, K. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J. Mol. Biol. 381, 478–486 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ader, C. et al. Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 170–176 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Lindahl, E. & Sansom, M. S. Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol. 18, 425–431 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, H. W. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070 (1986)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nielsen, C., Goulian, M. & Andersen, O. S. Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1966–1983 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goulian, M. et al. Gramicidin channel kinetics under tension. Biophys. J. 74, 328–337 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tabarean, I. V., Juranka, P. & Morris, C. E. Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys. J. 77, 758–774 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laitko, U., Juranka, P. F. & Morris, C. E. Membrane stretch slows the concerted step prior to opening in a Kv channel. J. Gen. Physiol. 127, 687–701 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidt, D. & Mackinnon, R. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proc. Natl Acad. Sci. USA 105, 19276–19281 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Erez, E., Fass, D. & Bibi, E. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459, 371–378 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Gill, S. C. & von Hippel, P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989)

    Article  CAS  PubMed  Google Scholar 

  52. Heginbotham, L., Kolmakova-Partensky, L. & Miller, C. Functional reconstitution of a prokaryotic K+ channel. J. Gen. Physiol. 111, 741–749 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perozo, E., Cortes, D. M. & Cuello, L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nature Struct. Biol. 5, 459–469 (1998)

    Article  CAS  PubMed  Google Scholar 

  54. Cuello, L. G., Romero, J. G., Cortes, D. M. & Perozo, E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37, 3229–3236 (1998)

    Article  CAS  PubMed  Google Scholar 

  55. Hurst, R. O. The determination of nucleotide phosphorus with a stannous chloride-hydrazine sulphate reagent. Can. J. Biochem. Physiol. 42, 287–292 (1964)

    CAS  Google Scholar 

  56. Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167 (1951)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Chen, Y. H., Yang, J. T. & Chau, K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974)

    Article  CAS  PubMed  Google Scholar 

  58. Ladokhin, A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem. 285, 235–245 (2000)

    Article  CAS  PubMed  Google Scholar 

  59. Abrams, F. S. & London, E. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32, 10826–10831 (1993)

    Article  CAS  PubMed  Google Scholar 

  60. Wiener, M. C., King, G. I. & White, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water. Biophys. J. 60, 568–576 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wiener, M. C. & White, S. H. Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analogue of dioleoylphosphatidylcholine. Biochemistry 30, 6997–7008 (1991)

    Article  CAS  PubMed  Google Scholar 

  62. Hristova, K. & White, S. H. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by X-ray diffraction using specific bromination of the double-bonds: effect of hydration. Biophys. J. 74, 2419–2433 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, S. Y., Lee, A., Chen, J. & MacKinnon, R. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc. Natl Acad. Sci. USA 102, 15441–15446 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  PubMed  Google Scholar 

  66. Feller, S. E. & MacKerell, A. D. An improved empirical potential energy function for molecular simulations of phospholipids. J. Phys. Chem. B 104, 7510–7515 (2000)

    Article  CAS  Google Scholar 

  67. Klauda, J. B., Brooks, B. R., MacKerell, A. D., Venable, R. M. & Pastor, R. W. An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J. Phys. Chem. B 109, 5300–5311 (2005)

    Article  CAS  PubMed  Google Scholar 

  68. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  ADS  CAS  Google Scholar 

  69. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  ADS  Google Scholar 

  70. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  ADS  CAS  Google Scholar 

  71. Grubmüller, H., Heller, H., Windemuth, A. & Schulten, K. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6, 121–142 (1991)

    Article  Google Scholar 

  72. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant-pressure molecular-dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994)

    Article  ADS  CAS  Google Scholar 

  73. Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995)

    Article  ADS  CAS  Google Scholar 

  74. Humphrey, W., Dalke, W. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  75. Benz, R. W., Castro-Román, F., Tobias, D. J. & White, S. H. Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys. J. 88, 805–817 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. Roux, B. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73, 2980–2989 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roux, B. The membrane potential and its representation by a constant electric field in computer simulations. Biophys. J. 95, 4205–4216 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grabe, M., Lecar, H., Jan, Y. N. & Jan, L. Y. A quantitative assessment of models for voltage-dependent gating of ion channels. Proc. Natl Acad. Sci. USA 101, 17640–17645 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Forsen, S. H. A. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys. 39, 2892–2901 (1963)

    Article  ADS  CAS  Google Scholar 

  81. Soubias, O. & Gawrisch, K. Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy. J. Am. Chem. Soc. 127, 13110–13111 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS) DNA sequencing facility for DNA sequencing, H. Jaffe in the NINDS protein sequencing facility for mass spectrometry and peptide sequencing and T. Kitaguchi for cloning KvAP. We also thank T. Kimura, M. Mayer, M. Milescu, J. Mindell and S. Silberberg for discussions. This work was supported by the Intramural Research Programs of the NINDS, NIH (K.J.S.), and the National Institute on Alcohol Abuse and Alcoholism, NIH (K.G.); NIH grants GM74737 (S.H.W.) and Program Project GM86685 from the NINDS and the National Institute of General Medical Science (S.H.W., D.J.T.); and US National Science Foundation (NSF) grant CHE-0750175 (D.J.T.). We are grateful for allocation of computer time on the NSF-supported Teragrid resources provided by the Texas Advanced Computing Center, and the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used for neutron diffraction experiments. The identification of any commercial product or trade name does not imply endorsement or recommendation by the US National Institute of Standards and Technology.

Author Contributions D.K. performed the biochemistry experiments; M.M., D.K. and D.L.W. performed the neutron diffraction experiments; D.K. and K.G. performed the solid-state NMR experiments; and J.A.F. and E.V.S. performed molecular dynamics simulations. All authors contributed to the study design and to writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen H. White or Kenton J. Swartz.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8 with Legends. (PDF 4374 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krepkiy, D., Mihailescu, M., Freites, J. et al. Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462, 473–479 (2009). https://doi.org/10.1038/nature08542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08542

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing