Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

iPS cells produce viable mice through tetraploid complementation

Abstract

Since the initial description of induced pluripotent stem (iPS) cells created by forced expression of four transcription factors in mouse fibroblasts, the technique has been used to generate embryonic stem (ES)-cell-like pluripotent cells from a variety of cell types in other species, including primates and rat1,2,3,4,5,6. It has become a popular means to reprogram somatic genomes into an embryonic-like pluripotent state, and a preferred alternative to somatic-cell nuclear transfer and somatic-cell fusion with ES cells7,8. However, iPS cell reprogramming remains slow and inefficient. Notably, no live animals have been produced by the most stringent tetraploid complementation assay, indicative of a failure to create fully pluripotent cells. Here we report the generation of several iPS cell lines that are capable of generating viable, fertile live-born progeny by tetraploid complementation. These iPS cells maintain a pluripotent potential that is very close to ES cells generated from in vivo or nuclear transfer embryos. We demonstrate the practicality of using iPS cells as useful tools for the characterization of cellular reprogramming and developmental potency, and confirm that iPS cells can attain true pluripotency that is similar to that of ES cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the iPS cells generated in 20% knockout serum replacement culture systems.
Figure 2: In vivo developmental potential of iPS cell lines generated by tetraploid complementation.
Figure 3: Global gene expression analysis of iPS cell lines competent for tetraploid complementation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data in this study have been deposited with the Gene Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE16925.

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Liu, H. et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Li, W. et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4, 16–19 (2009)

    Article  PubMed  Google Scholar 

  5. Liao, J. et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 11–15 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Eminli, S., Utikal, J., Arnold, K., Jaenisch, R. & Hochedlinger, K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467–2474 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Wernig, M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl Acad. Sci. USA 105, 5856–5861 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnol. 26, 795–797 (2008)

    Article  CAS  Google Scholar 

  19. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  20. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  21. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990)

    CAS  PubMed  Google Scholar 

  23. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol. 25, 1177–1181 (2007)

    Article  CAS  Google Scholar 

  25. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols 2, 3081–3089 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, J., Dutra, A., Takesono, A., Garrett-Beal, L. & Schwartzberg, P. L. Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 39, 100–104 (2004)

    Article  PubMed  Google Scholar 

  27. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng, F. & Schultz, R. M. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev. Biol. 283, 40–57 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Nagy, T., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2003)

    Google Scholar 

  30. Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Chatot C. L, Ziomek, C. A., Bavister, B. D., Lewis, J. L. & Torres, I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–888 (1989)

    Article  PubMed  Google Scholar 

  32. Zhou, Q., Jouneau, A., Brochard, V., Adenot, P. & Renard, J. P. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol. Reprod. 65, 412–419 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Love, J. M., Knight, A. M., McAleer, M. A. & Todd, J. A. Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res. 18, 4123–4130 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olivares, E. C. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nature Biotechnol. 20, 1124–1128 (2002)

    Article  CAS  Google Scholar 

  35. Zeng, F., Baldwin, D. A. & Schultz, R. M. Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from the China National Basic Research Program 2006CB701500 (to Q.Z.), 2007CB947800 (to F.Z.), 2007CB947700 (to L.W.) and grants from the National Science Foundation of China 30525040 (to Q.Z.) and 30871379/C0607 (to F.Z.).

Author Contributions Q.Z. and F.Z. designed the experiments, supervised lab work, analysed and interpreted data, and wrote the paper; X.Z., W.L., Z.L., L.L., M.T., T.H., J.H., C.G., Q.M. and F.Z. performed experiments; L.L. and W.L. analysed data; W.L. supervised experiments; and X.Z., W.L. and Z.L. contributed to part of the Online Methods section.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanyi Zeng or Qi Zhou.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 with Legends and Supplementary Tables S1-S3. (PDF 4219 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Xy., Li, W., Lv, Z. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009). https://doi.org/10.1038/nature08267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08267

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing