Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Hypothesis
  • Published:

A hierarchical model for evolution of 23S ribosomal RNA

Abstract

The emergence of the ribosome constituted a pivotal step in the evolution of life. This event happened nearly four billion years ago, and any traces of early stages of ribosome evolution are generally thought to have completely eroded away. Surprisingly, a detailed analysis of the structure of the modern ribosome reveals a concerted and modular scheme of its early evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of inter-domain A-minor interactions in the secondary structure of the E. coli 23S rRNA.
Figure 2: The location of the identified elements in the E. coli 23S rRNA secondary structure (a) and the network of D1 and D2 dependencies between them (b).
Figure 3: The aggrandizement of the 23S rRNA structure during its evolution.

Similar content being viewed by others

References

  1. Stillman, B. (ed.) The Ribosome. Cold Spring Harbor Symposia on Quantative Biology (Cold Spring Harbor Laboratory Press, 2001)

    Google Scholar 

  2. Crick, F. H. The origin of the genetic code. J. Mol. Biol. 38, 367–369 (1968)

    Article  CAS  Google Scholar 

  3. Gilbert, W. The RNA world. Nature 319, 618 (1986)

    Article  ADS  Google Scholar 

  4. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Ban, N. et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001)

    Article  CAS  Google Scholar 

  7. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416–1419 (1992)

    Article  ADS  CAS  Google Scholar 

  11. Nissen, P. et al. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Gutell, R. R., Larsen, N. & Woese, C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58, 10–26 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Doudna, J. A. & Rath, V. L. Structure and function of the eukaryotic ribosome: the next frontier. Cell 109, 153–156 (2002)

    Article  CAS  Google Scholar 

  14. Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002)

    Article  Google Scholar 

  15. Nissen, P. et al. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Doherty, E. A., Batey, R. T., Masquida, B. & Doudna, J. A. A universal mode of helix packing in RNA. Nature Struct. Biol. 8, 339–343 (2001)

    Article  CAS  Google Scholar 

  17. Polacek, N. & Mankin, A. S. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit. Rev. Biochem. Mol. Biol. 40, 285–311 (2005)

    Article  CAS  Google Scholar 

  18. Agmon, I., Bashan, A., Zarivach, R. & Yonath, A. Symmetry at the active site of the ribosome: structural and functional implications. Biol. Chem. 386, 833–844 (2005)

    Article  CAS  Google Scholar 

  19. Samaha, R. R., Green, R. & Noller, H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Kim, D. F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999)

    Article  CAS  Google Scholar 

  21. Hansen, J. L., Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structural insights into peptide bond formation. Proc. Natl Acad. Sci. USA 99, 11670–11675 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature 390, 96–100 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Savelsbergh, A. et al. Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12. J. Biol. Chem. 275, 890–894 (2000)

    Article  CAS  Google Scholar 

  24. Kavran, J. M. & Steitz, T. A. Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: analysis of L11 movements. J. Mol. Biol. 371, 1047–1059 (2007)

    Article  CAS  Google Scholar 

  25. Nikulin, A. et al. Structure of the L1 protuberance in the ribosome. Nature Struct. Biol. 10, 104–108 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Brakier-Gingras, A. Mankin, S. Michnick and I. Ponomarenko for advice and comments. This work was supported by a grant from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Steinberg.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Notes and Supplementary Figures 1-3 with Legends (PDF 3355 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokov, K., Steinberg, S. A hierarchical model for evolution of 23S ribosomal RNA. Nature 457, 977–980 (2009). https://doi.org/10.1038/nature07749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07749

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing