Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal

Abstract

The long-standing assumption that messenger RNA (mRNA) degradation in Escherichia coli begins with endonucleolytic cleavage has been challenged by the recent discovery that RNA decay can be triggered by a prior non-nucleolytic event that marks transcripts for rapid turnover: the rate-determining conversion of the 5′ terminus from a triphosphate to a monophosphate1. This modification creates better substrates for the endonuclease RNase E, whose cleavage activity at internal sites is greatly enhanced when the RNA 5′ end is monophosphorylated2,3. Moreover, it suggests an explanation for the influence of 5′ termini on the endonucleolytic cleavage of primary transcripts, which are triphosphorylated4,5,6,7,8. However, no enzyme capable of removing pyrophosphate from RNA 5′ ends has been identified in any bacterial species. Here we show that the E. coli protein RppH (formerly NudH/YgdP) is the RNA pyrophosphohydrolase that initiates mRNA decay by this 5′-end-dependent pathway. In vitro, RppH efficiently removes pyrophosphate from the 5′ end of triphosphorylated RNA, irrespective of the identity of the 5′-terminal nucleotide. In vivo, it accelerates the degradation of hundreds of E. coli transcripts by converting their triphosphorylated 5′ ends to a more labile monophosphorylated state that can stimulate subsequent ribonuclease cleavage. That the action of the pyrophosphohydrolase is impeded when the 5′ end is structurally sequestered by a stem-loop helps to explain the stabilizing influence of 5′-terminal base pairing on mRNA lifetimes. Together, these findings suggest a possible basis for the effect of RppH and its orthologues on the invasiveness of bacterial pathogens. Interestingly, this master regulator of 5′-end-dependent mRNA degradation in E. coli not only catalyses a process functionally reminiscent of eukaryotic mRNA decapping but also bears an evolutionary relationship to the eukaryotic decapping enzyme Dcp2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA pyrophosphohydrolase activity of purified RppH.
Figure 2: Triphosphate-to-monophosphate conversion by purified RppH.
Figure 3: RNA pyrophosphohydrolase activity of RppH in E. coli.

Similar content being viewed by others

References

  1. Celesnik, H., Deana, A. & Belasco, J. G. Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol. Cell 27, 79–90 (2007)

    Article  CAS  Google Scholar 

  2. Mackie, G. A. Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395, 720–723 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Jiang, X. & Belasco, J. G. Catalytic activation of multimeric RNase E and RNase G by 5′-monophosphorylated RNA. Proc. Natl Acad. Sci. USA 101, 9211–9216 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Emory, S. A., Bouvet, P. & Belasco, J. G. A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli . Genes Dev. 6, 135–148 (1992)

    Article  CAS  Google Scholar 

  5. Bouvet, P. & Belasco, J. G. Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli . Nature 360, 488–491 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Bricker, A. L. & Belasco, J. G. Importance of a 5′ stem-loop for longevity of papA mRNA in Escherichia coli . J. Bacteriol. 181, 3587–3590 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mackie, G. A. Stabilization of circular rpsT mRNA demonstrates the 5′-end dependence of RNase E action in vivo. J. Biol. Chem. 275, 25069–25072 (2000)

    Article  CAS  Google Scholar 

  8. Baker, K. E. & Mackie, G. A. Ectopic RNase E sites promote bypass of 5′-end-dependent mRNA decay in Escherichia coli . Mol. Microbiol. 47, 75–88 (2003)

    Article  CAS  Google Scholar 

  9. McLennan, A. G. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63, 123–143 (2006)

    Article  CAS  Google Scholar 

  10. Mildvan, A. S. et al. Structures and mechanisms of Nudix hydrolases. Arch. Biochem. Biophys. 433, 129–143 (2005)

    Article  CAS  Google Scholar 

  11. Mackie, G. A. & Parsons, G. D. Tandem promoters in the gene for ribosomal protein S20. J. Biol. Chem. 258, 7840–7846 (1983)

    CAS  PubMed  Google Scholar 

  12. Mackie, G. Specific endonucleolytic cleavage of the mRNA for ribosomal protein S20 of Escherichia coli requires the product of the ams gene in vivo and in vitro. J. Bacteriol. 173, 2488–2497 (1991)

    Article  CAS  Google Scholar 

  13. Mackie, G. A. Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. J. Biol. Chem. 267, 1054–1061 (1992)

    CAS  PubMed  Google Scholar 

  14. Ow, M. C., Perwez, T. & Kushner, S. R. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol. Microbiol. 49, 607–622 (2003)

    Article  CAS  Google Scholar 

  15. Tock, M. R., Walsh, A. P., Carroll, G. & McDowall, K. J. The CafA protein required for the 5′-maturation of 16 S rRNA is a 5′-end-dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275, 8726–8732 (2000)

    Article  CAS  Google Scholar 

  16. Jiang, X., Diwa, A. & Belasco, J. G. Regions of RNase E important for 5′-end-dependent RNA cleavage and autoregulated synthesis. J. Bacteriol. 182, 2468–2475 (2000)

    Article  CAS  Google Scholar 

  17. Lee, K., Bernstein, J. A. & Cohen, S. N. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli . Mol. Microbiol. 43, 1445–1456 (2002)

    Article  CAS  Google Scholar 

  18. Feng, Y. & Cohen, S. N. Unpaired terminal nucleotides and 5′ monophosphorylation govern 3′ polyadenylation by Escherichia coli poly(A) polymerase I. Proc. Natl Acad. Sci. USA 97, 6415–6420 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Mitchell, S. J. & Minnick, M. F. Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect. Immun. 63, 1552–1562 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Badger, J. L., Wass, C. A. & Kim, K. S. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol. Microbiol. 36, 174–182 (2000)

    Article  CAS  Google Scholar 

  21. Ismail, T. M., Hart, C. A. & McLennan, A. G. Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J. Biol. Chem. 278, 32602–32607 (2003)

    Article  CAS  Google Scholar 

  22. Edelstein, P. H. et al. Legionella pneumophila NudA Is a Nudix hydrolase and virulence factor. Infect. Immun. 73, 6567–6576 (2005)

    Article  CAS  Google Scholar 

  23. Bessman, M. J. et al. The gene ygdP, associated with the invasiveness of Escherichia coli K1, designates a Nudix hydrolase, Orf176, active on adenosine (5′)-pentaphospho-(5′)-adenosine (Ap5A). J. Biol. Chem. 276, 37834–37838 (2001)

    CAS  PubMed  Google Scholar 

  24. Muhlrad, D., Decker, C. J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994)

    Article  CAS  Google Scholar 

  25. Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411–5422 (1999)

    Article  CAS  Google Scholar 

  26. Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl Acad. Sci. USA 99, 12663–12668 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Coleman, T. M., Wang, G. & Huang, F. Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 φ2.5 promoter. Nucleic Acids Res. 32, e14 (2004)

    Article  Google Scholar 

  28. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006)

    Article  Google Scholar 

  29. Arnold, T. E., Yu, J. & Belasco, J. G. mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA 4, 319–330 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Emory, S. A. & Belasco, J. G. The ompA 5′ untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J. Bacteriol. 172, 4472–4481 (1990)

    Article  CAS  Google Scholar 

  31. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Guttman for his assistance in the discovery that purified RppH has RNA pyrophosphohydrolase activity. This research was supported by a grant to J.G.B. from the National Institutes of Health.

Author Contributions A.D., H.C. and J.G.B. planned the studies, interpreted the data and wrote the manuscript. A.D. and H.C. performed the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel G. Belasco.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S5 with Legends and Supplementary Tables S1-S2 (PDF 2542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deana, A., Celesnik, H. & Belasco, J. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451, 355–358 (2008). https://doi.org/10.1038/nature06475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06475

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing