Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA

An Erratum to this article was published on 21 February 2008

Abstract

Immune responses are normally targeted against microbial pathogens and not self-antigens by mechanisms that are only partly understood. Here we define a newly discovered pathway that prevents autoimmunity by limiting the levels on T lymphocytes of a co-stimulatory receptor, the inducible T-cell co-stimulator (ICOS). In sanroque mice homozygous for an M199R mutation in the ROQ domain of Roquin (also known as Rc3h1)1, increased Icos expression on T cells causes the accumulation of lymphocytes that is associated with a lupus-like autoimmune syndrome. Roquin normally limits Icos expression by promoting the degradation of Icos messenger RNA. A conserved segment in the unusually long ICOS 3′ untranslated mRNA is essential for regulation by Roquin. This segment comprises a 47-base-pair minimal region complementary to T-cell-expressed microRNAs including miR-101, the repressive activity of which is disrupted by base-pair inversions predicted to abrogate miR-101 binding. These findings illuminate a critical post-transcriptional pathway within T cells that regulates lymphocyte accumulation and autoimmunity, and highlights the therapeutic potential of partially antagonising the ICOS pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of Icos contributes to autoimmunity in sanroque (Rc3h1san/san) mice.
Figure 2: Roquin represses ICOS through sequences in the ICOS mRNA 3′ UTR.
Figure 3: Identification of the minimal region within ICOS 3′ UTR containing cis -acting elements for Roquin control of ICOS mRNA abundance.
Figure 4: A miRNA target site mediates the regulation of Icos mRNA by Roquin.

Similar content being viewed by others

References

  1. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994)

    Article  CAS  PubMed  Google Scholar 

  3. Janeway, C. A. & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–285 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Lafferty, K. J., Andrus, L. & Prowse, S. J. Role of lymphokine and antigen in the control of specific T cell responses. Immunol. Rev. 51, 279–314 (1980)

    Article  CAS  PubMed  Google Scholar 

  5. Suh, W. K. et al. The inducible costimulator plays the major costimulatory role in humoral immune responses in the absence of CD28. J. Immunol. 172, 5917–5923 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Nurieva, R. et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 25, 2623–2633 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J. Immunol. 177, 4927–4932 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo . J. Immunol. 175, 2340–2348 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Dong, C., Temann, U. A. & Flavell, R. A. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166, 3659–3662 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nature Immunol. 4, 261–268 (2003)

    Article  CAS  Google Scholar 

  14. Mak, T. W. et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses. Nature Immunol. 4, 765–772 (2003)

    Article  CAS  Google Scholar 

  15. Wong, S. C., Oh, E., Ng, C. H. & Lam, K. P. Impaired germinal center formation and recall T-cell-dependent immune responses in mice lacking the costimulatory ligand B7–H2. Blood 102, 1381–1388 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Newbury, S. F., Muhlemann, O. & Stoecklin, G. Turnover in the Alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover. EMBO Rep. 7, 143–148 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barreau, C., Paillard, L. & Osborne, H. B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Rajewsky, N. MicroRNA target predictions in animals. Nature Genet. 38 (Suppl). S8–S13 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sethupathy, P., Megraw, M. & Hatzigeorgiou, A. G. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods 3, 881–886 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6, R71 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jackson, R. J. & Standart, N. How do microRNAs regulate gene expression? Sci. STKE 2007, re1 (2007)

    Article  PubMed  Google Scholar 

  23. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Tordjman, R. et al. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nature Immunol. 3, 477–482 (2002)

    Article  CAS  Google Scholar 

  27. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Jakymiw, A. et al. Autoimmune targeting of key components of RNA interference. Arthritis Res. Ther. 8, R87 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Scheu, S. Activation of the integrated stress response during T helper cell differentiation. Nature Immunol. 7, 644–651 (2006)

    Article  CAS  Google Scholar 

  30. Brudno, M. et al. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–731 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Parker and J. Liu for the MS2–YFP–NLS plasmids; R. Kroczek and Millennium Pharmaceuticals for Icos-/- mice; Q.-J. Li, M. Davis and C.-Z. Chen for advice with the miRNA experiments; and the ACRF Biomolecular Resource Facility for real-time RT–PCR. This work was supported by the NHMRC, and by a Senior Viertel Medical Research Fellowship to C.G.V.

Author Contributions D.Y., C.C.G. and C.G.V. designed the study; D.Y., A.H.T. and X.H. performed experiments and analyzed the data; V.A., N.S., K.M.G. and D.G.S. helped with experiments; A.H., P.J.L. and K.P.L. provided expertise and advice; and D.Y., C.C.G. and C.G.V. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola G. Vinuesa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with Legends and Supplementary Table 1. (PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Yu, Tan, AM., Hu, X. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007). https://doi.org/10.1038/nature06253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06253

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing