Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era

Abstract

Atmospheric carbon dioxide concentrations seem to have been several times modern levels during much of the Palaeozoic era (543–248 million years ago), but decreased during the Carboniferous period to concentrations similar to that of today1,2,3. Given that carbon dioxide is a greenhouse gas, it has been proposed that surface temperatures were significantly higher during the earlier portions of the Palaeozoic era1. A reconstruction of tropical sea surface temperatures based on the δ18O of carbonate fossils indicates, however, that the magnitude of temperature variability throughout this period was small4, suggesting that global climate may be independent of variations in atmospheric carbon dioxide concentration. Here we present estimates of sea surface temperatures that were obtained from fossil brachiopod and mollusc shells using the ‘carbonate clumped isotope’ method5—an approach that, unlike the δ18O method, does not require independent estimates of the isotopic composition of the Palaeozoic ocean. Our results indicate that tropical sea surface temperatures were significantly higher than today during the Early Silurian period (443–423 Myr ago), when carbon dioxide concentrations are thought to have been relatively high, and were broadly similar to today during the Late Carboniferous period (314–300 Myr ago), when carbon dioxide concentrations are thought to have been similar to the present-day value. Our results are consistent with the proposal that increased atmospheric carbon dioxide concentrations drive or amplify increased global temperatures1,6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isotopic compositions and inferred crystallization temperatures of Pennsylvanian and Silurian fossils.
Figure 2: Estimates of tropical temperature anomalies relative to today.
Figure 3: Estimates of the oxygen isotopic composition of Phanerozoic sea water.

Similar content being viewed by others

References

  1. Berner, R. A. GEOCARBII: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994)

    Article  ADS  CAS  Google Scholar 

  2. Berner, R. A. & Kothavala, Z. GEOCARBIII: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001)

    Article  ADS  CAS  Google Scholar 

  3. François, L. M. & Walker, J. C. G. Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic signature of seawater. Am. J. Sci. 292, 81–135 (1992)

    Article  ADS  Google Scholar 

  4. Veizer, J., Godderis, Y. & François, L. M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Ghosh, P. et al. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Royer, D. L., Berner, R. A. & Park, J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446, 530–532 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Ruddiman, W. F. Earth’s Climate: Past and Future (Freeman, New York, 2001)

    Google Scholar 

  8. Montañez, I. P. et al. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315, 87–91 (2007)

    Article  ADS  Google Scholar 

  9. Mora, C. I., Driese, S. G. & Colarusso, L. A. Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271, 1105–1107 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Yapp, C. J. & Poths, H. Ancient atmospheric CO2 pressures inferred from natural goethites. Nature 355, 342–344 (1992)

    Article  ADS  CAS  Google Scholar 

  11. Crowley, T. J. & North, G. R. Paleoclimatology (Oxford Univ. Press, Oxford, 1991)

    Google Scholar 

  12. Caputo, M. V. & Crowell, J. C. Migration of glacial centers across Gondwana during Paleozoic Era. Geol. Soc. Am. Bull. 96, 1020–1036 (1985)

    Article  ADS  Google Scholar 

  13. Frakes, L. A. & Francis, J. E. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature 333, 547–549 (1988)

    Article  ADS  Google Scholar 

  14. Boucot, A. J., Xu, C. & Scotese, C. R. Phanerozoic climate zones and paleogeography with a consideration of atmospheric CO2 levels. Paleont J. 38, 115–122 (2004)

    Google Scholar 

  15. Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Land, L. S. Comment on “Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater” by H. Qing and J. Veizer. Geochim. Cosmochim. Acta 59, 2843–2844 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Azmy, K., Veizer, J., Bassett, M. G. & Copper, P. Oxygen and carbon isotopic composition of Silurian brachiopods: Implications for coeval seawater and glaciations. Geol. Soc. Am. Bull. 110, 1499–1512 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Azmy, K., Veizer, J., Jin, J., Copper, P. & Brand, U. Paleobathymetry of a Silurian shelf based on brachiopod assemblages: An oxygen isotope test. Can. J. Earth Sci. 43, 281–293 (2006)

    Article  ADS  Google Scholar 

  19. Squires, R. L. Burial Environment, Diagenesis, Mineralogy and Mg & Sr Contents of Skeletal Carbonates in the Buckhorn Asphalt of Middle Pennsylvanian Age, Arbuckle Mountains, Oklahoma. PhD thesis, California Inst. Technol. (1973)

  20. Brand, U. The oxygen and carbon isotopic composition of Carboniferous fossil components: Sea-water effects. Sedimentology 29, 139–147 (1982)

    Article  ADS  CAS  Google Scholar 

  21. Brand, U. Aragonite-calcite transformation based on Pennsylvanian molluscs. Geol. Soc. Am. Bull. 101, 377–390 (1989)

    Article  ADS  CAS  Google Scholar 

  22. Wenzel, B., Lécuyer, C. & Joachimski, M. M. Comparing oxygen isotope records of Silurian calcite and phosphate—δ18O compositions of brachiopods and conodonts. Geochim. Cosmochim. Acta 64, 1859–1872 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Gregory, R. T. & Taylor, H. P. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman – Evidence for δ18O buffering of the oceans by deep (less than 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. 86, 2737–2755 (1981)

    Article  ADS  CAS  Google Scholar 

  24. Muehlenbachs, K. The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem. Geol. 145, 263–273 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Kasting, J. F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 82–93 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Brock, T. D. Life at high temperatures. Science 230, 132–138 (1985)

    Article  ADS  CAS  Google Scholar 

  27. Eiler, J. M. & Schauble, E. 18O13C16O in Earth’s atmosphere. Geochim. Cosmochim. Acta 68, 4767–4777 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Wallmann, K. Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record. Geochem. Geophys. Geosys. 5, Q06004 10.1029/2003GC000683. (2004)

  29. Wang, Z., Schauble, E. A. & Eiler, J. M. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim. Cosmochim. Acta 68, 4779–4797 (2004)

    Article  ADS  CAS  Google Scholar 

  30. McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857 (1950)

    Article  ADS  CAS  Google Scholar 

  31. Swart, P. K., Burns, S. J. & Leder, J. J. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. 86, 89–96 (1991)

    CAS  Google Scholar 

  32. Kim, S.-T. & O’Neil, J. R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461–3475 (1997)

    Article  ADS  CAS  Google Scholar 

  33. Böhm, F. E. et al. Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim. Cosmochim. Acta 64, 1695–1703 (2000)

    Article  ADS  Google Scholar 

  34. Adkins, J. F., Boyle, E. A., Curry, W. B. & Lutringer, A. Stable isotopes in deep sea corals and a new mechanism for ‘‘vital effect’’. Geochim. Cosmochim. Acta 67, 1129–1143 (2003)

    Article  ADS  CAS  Google Scholar 

  35. Ghosh, P., Eiler, J. M., Campana, S. E. & Feeney, R. F. Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim. Cosmochim. Acta 71, 2736–2744 (2007)

    Article  ADS  CAS  Google Scholar 

  36. Brand, U., Logan, A., Hiller, N. & Richardson, J. Geochemistry of modern brachiopods: Applications and implications for oceanography and paleoceanography. Chem. Geol. 198, 305–334 (2003)

    Article  ADS  CAS  Google Scholar 

  37. Wanamaker, A. D. et al. An aquaculture-based method for calibrated bivalve isotope paleothermometry. Geochem. Geophys. Geosyst. 7 Q09011 doi: 10.1029/2005GC001189 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Affek, W. Guo and P. Ghosh for laboratory advice, and A. Wanamaker for assistance with samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemarie E. Came.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Notes, Supplementary Figure S1, Supplementary Tables S1-S2 and additional references. (PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Came, R., Eiler, J., Veizer, J. et al. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449, 198–201 (2007). https://doi.org/10.1038/nature06085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06085

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing