Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The detection of carbonation by the Drosophila gustatory system

Abstract

There are five known taste modalities in humans: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although the fruitfly Drosophila melanogaster tastes sugars, salts and noxious chemicals, the nature and number of taste modalities in this organism is not clear. Previous studies have identified one taste cell population marked by the gustatory receptor gene Gr5a that detects sugars, and a second population marked by Gr66a that detects bitter compounds1,2,3,4. Here we identify a novel taste modality in this insect: the taste of carbonated water. We use a combination of anatomical, calcium imaging and behavioural approaches to identify a population of taste neurons that detects CO2 and mediates taste acceptance behaviour. The taste of carbonation may allow Drosophila to detect and obtain nutrients from growing microorganisms. Whereas CO2 detection by the olfactory system mediates avoidance5, CO2 detection by the gustatory system mediates acceptance behaviour, demonstrating that the context of CO2 determines appropriate behaviour. This work opens up the possibility that the taste of carbonation may also exist in other organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The E409-Gal4 enhancer trap labels taste peg neurons that project to the taste region of the fly brain.
Figure 2: Neurons labelled by E409 respond to carbonation.
Figure 3: E409 neurons are necessary for behavioural preference for sodium bicarbonate, pH 6.5, and sufficient to trigger taste acceptance behaviour.
Figure 4: Segregation of CO 2 detection by the taste and olfactory systems.

Similar content being viewed by others

References

  1. Chyb, S., Dahanukar, A., Wickens, A. & Carlson, J. R. Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc. Natl Acad. Sci. USA 100 (suppl. 2). 14526–14530 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Thorne, N., Chromey, C., Bray, S. & Amrein, H. Taste perception and coding in Drosophila.. Curr. Biol. 14, 1065–1079 (2004)

    Article  CAS  Google Scholar 

  3. Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004)

    Article  CAS  Google Scholar 

  4. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006)

    Article  CAS  Google Scholar 

  5. Suh, G. S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994)

    Article  CAS  Google Scholar 

  7. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001)

    Article  CAS  Google Scholar 

  8. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004)

    PubMed  Google Scholar 

  9. Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Jones, W. D., Cayirlioglu, P., Kadow, I. G. & Vosshall, L. B. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86–90 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Kwon, J. Y., Dahanukar, A., Weiss, L. A. & Carlson, J. R. The molecular basis of CO2 reception in Drosophila. Proc. Natl Acad. Sci. USA 104, 3574–3578 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001)

    Article  CAS  Google Scholar 

  13. Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830–1834 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Dunipace, L., Meister, S., McNealy, C. & Amrein, H. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11, 822–835 (2001)

    Article  CAS  Google Scholar 

  15. Robertson, H. M., Warr, C. G. & Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100 (Suppl 2). 14537–14542 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Coates, E. L. Olfactory CO2 chemoreceptors. Respir. Physiol. 129, 219–229 (2001)

    Article  CAS  Google Scholar 

  17. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. & Snyder, S. H. Carbon monoxide: a putative neural messenger. Science 259, 381–384 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Wingrove, J. A. & O’Farrell, P. H. Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila.. Cell 98, 105–114 (1999)

    Article  CAS  Google Scholar 

  20. Faucher, C., Forstreuter, M., Hilker, M. & de Bruyne, M. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J. Exp. Biol. 209, 2739–2748 (2006)

    Article  CAS  Google Scholar 

  21. Inoshita, T. & Tanimura, T. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc. Natl Acad. Sci. USA 103, 1094–1099 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Hummel, T., Krukkert, K., Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26, 357–370 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Heberlein and her laboratory for generating and providing the Gal4 enhancer trap library containing the E409-Gal4 transgenic flies; Z. Wang for generation of the Gr5a-GFP-IRES-GFP-IRES-GFP transgenic flies; S. Asgarian for technical assistance in the anatomy screen; and G. Agarwaal for assistance with Matlab. We also thank L. Vosshall, C. Zuker and members of the Scott laboratory for providing comments on the manuscript. This work was supported by a grant from the NIH (NIDCD), a Burroughs Wellcome Fund Career Award, a McKnight Scholar Award and a John Merck Award to K.S.

Author Contributions W.F. performed the majority of G-CaMP imaging experiments, developed the behavioural assay, performed behavioural experiments and co-wrote the manuscript. P.K. performed the anatomy screen leading to the identification of E409-Gal4. S.M. performed the G-CaMP imaging experiments of capsaicin-induced responses in E409-Gal4, UAS-GCaMP, UAS-VR1E600K flies, sequenced the Gal4 insertion site in the E409-Gal4 flies and participated in initial characterization of the E409 neurons. K.S. assisted P.K. in the anatomy screen and W.F. in the G-CaMP imaging and behavioural studies, co-wrote the manuscript and supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Scott.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figure 1 with Legend. The Supplemental Figure provides a schematic of fly taste anatomy and the expression pattern of E409 in the fly brain. (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischler, W., Kong, P., Marella, S. et al. The detection of carbonation by the Drosophila gustatory system. Nature 448, 1054–1057 (2007). https://doi.org/10.1038/nature06101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06101

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing