Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled exchange interaction between pairs of neutral atoms in an optical lattice

Abstract

Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms1 confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials2,3 to isolate and manipulate arrays of paired 87Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling4 in a system of neutral atoms5. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its ‘half-implementation’, the gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental sequence.
Figure 2: Qubit state analysis.
Figure 3: Collisional swap dynamics.
Figure 4: Spin-phase coherence during the SWAP operation.

Similar content being viewed by others

References

  1. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Sebby-Strabley, J., Anderlini, M., Jessen, P. S. & Porto, J. V. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A. 73, 033605 (2006)

    Article  ADS  Google Scholar 

  3. Anderlini, M., Sebby-Strabley, J., Kruse, J., Porto, J. V. & Phillips, W. D. Controlled atom dynamics in a double-well optical lattice. J. Phys. B 39, S199–S210 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A. 57, 120–126 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Hayes, D., Julienne, P. S. & Deutsch, I. H. Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007)

    Article  ADS  Google Scholar 

  6. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  CAS  Google Scholar 

  7. DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Duan, L. M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  9. Brennen, G. K., Caves, C. M., Jessen, F. S. & Deutsch, I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. (in the press); preprint at <http://arxiv.org/quant-ph/0702039>.

  13. Pethick, C. J. & Smith, H. Bose-Einstein Condensation in Dilute Gases Ch. 5 (Cambridge Univ. Press, Cambridge, UK, 2002)

    Google Scholar 

  14. Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Batrouni, G. G. et al. Mott domains of bosons confined on optical lattices. Phys. Rev. Lett. 89, 117203 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Kastberg, A., Phillips, W. D., Rolston, S. L., Spreeuw, R. J. C. & Jessen, P. S. Adiabatic cooling of cesium to 700-nK in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Greiner, M., Bloch, I., Mandel, O., Hansch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Sebby-Strabley, J. et al. Preparing and probing atomic number states with an atom interferometer. Phys. Rev. Lett. 98, 200405 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Widera, A. et al. Coherent collisional spin dynamics in optical lattices. Phys. Rev. Lett. 95, 190405 (2005)

    Article  ADS  Google Scholar 

  22. Calarco, T., Dorner, U., Julienne, P. S., Williams, C. J. & Zoller, P. Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A. 70, 012306 (2004)

    Article  ADS  Google Scholar 

  23. Matthews, M. R. et al. Dynamical response of a Bose-Einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett. 81, 243–247 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Zhang, C. W., Rolston, S. L. & Das Sarma, S. Manipulation of single neutral atoms in optical lattices. Phys. Rev. A. 74, 042316 (2006)

    Article  ADS  Google Scholar 

  25. Altman, E., Hofstetter, W., Demler, E. & Lukin, M. D. Phase diagram of two-component bosons on an optical lattice. N. J. Phys. 5, 113–(1–19) (2003)

    Article  Google Scholar 

  26. Scarola, V. W. & Das Sarma, S. Quantum phases of the extended Bose-Hubbard hamiltonian: Possibility of a supersolid state of cold atoms in optical lattices. Phys. Rev. Lett. 95, 033003 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Isacsson, A. & Girvin, S. M. Multiflavor bosonic Hubbard models in the first excited Bloch band of an optical lattice. Phys. Rev. A. 72, 053604 (2005)

    Article  ADS  Google Scholar 

  28. Jané, E., Vidal, G., Dür, W., Zoller, P. & Cirac, J. I. Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comput. 3, 15–37 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Sørensen, A. & Mølmer, K. Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Spielman and S. Rolston for contributions to the project, and I. Deutsch for discussions. P.J.L., B.L.B. and J.S.-S. acknowledge support from the National Research Council Postdoctoral Research Associateship Program. This work was supported by DTO, ONR and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Porto.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderlini, M., Lee, P., Brown, B. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007). https://doi.org/10.1038/nature06011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing